Unified dimensionality reduction techniques in chronic liver disease detection
- URL: http://arxiv.org/abs/2412.21156v1
- Date: Mon, 30 Dec 2024 18:35:02 GMT
- Title: Unified dimensionality reduction techniques in chronic liver disease detection
- Authors: Anand Karna, Naina Khan, Rahul Rauniyar, Prashant Giridhar Shambharkar,
- Abstract summary: A number of machine learning algorithms are investigated in this study.
The main focus of our research is this dataset, which includes the medical records of 583 patients.
Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods.
- Score: 0.5242869847419834
- License:
- Abstract: Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
Related papers
- HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis [38.13689106933105]
We present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports.
Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans.
arXiv Detail & Related papers (2024-11-16T03:20:53Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018.
A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy.
The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients.
arXiv Detail & Related papers (2024-10-02T03:21:01Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
We propose an end-to-end approach for automated prognosis prediction using histology slides stained with H&E and HPS.
We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline.
We exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer (ViT) in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction.
arXiv Detail & Related papers (2023-11-17T03:32:11Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study.
PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays.
Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score)
arXiv Detail & Related papers (2023-05-10T06:43:33Z) - Detecting Chronic Kidney Disease(CKD) at the Initial Stage: A Novel
Hybrid Feature-selection Method and Robust Data Preparation Pipeline for
Different ML Techniques [0.0]
Chronic Kidney Disease (CKD) has infected almost 800 million people around the world. Around 1.7 million people die each year because of it.
Many researchers have applied distinct Machine Learning (ML) methods to detect CKD at an early stage, but detailed studies are still missing.
We present a structured and thorough method for dealing with the complexities of medical data with optimal performance.
arXiv Detail & Related papers (2022-03-02T20:38:49Z) - Cardiovascular Disease Prediction using Recursive Feature Elimination
and Gradient Boosting Classification Techniques [0.0]
This paper proposes a proposed gradient boosting (RFE-GB) algorithm in order to obtain accurate heart disease prediction.
The patients health record with important CVD features has been analyzed for the evaluation of the results.
arXiv Detail & Related papers (2021-06-11T16:17:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.