Improving Chronic Kidney Disease Detection Efficiency: Fine Tuned CatBoost and Nature-Inspired Algorithms with Explainable AI
- URL: http://arxiv.org/abs/2504.04262v1
- Date: Sat, 05 Apr 2025 19:41:47 GMT
- Title: Improving Chronic Kidney Disease Detection Efficiency: Fine Tuned CatBoost and Nature-Inspired Algorithms with Explainable AI
- Authors: Md. Ehsanul Haque, S. M. Jahidul Islam, Jeba Maliha, Md. Shakhauat Hossan Sumon, Rumana Sharmin, Sakib Rokoni,
- Abstract summary: Chronic Kidney Disease (CKD) is a major global health issue which is affecting million people around the world and with increasing rate of mortality.<n>This study proposes an advanced machine learning approach to enhance CKD detection by evaluating four models: Random Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regression (LR), and a fine-tuned CatBoost algorithm.<n>The proposed CatBoost model has used a nature inspired algorithm such as Simulated Annealing to select the most important features, Cuckoo Search to adjust outliers and grid search to fine tune its settings in such a way to achieve improved prediction accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic Kidney Disease (CKD) is a major global health issue which is affecting million people around the world and with increasing rate of mortality. Mitigation of progression of CKD and better patient outcomes requires early detection. Nevertheless, limitations lie in traditional diagnostic methods, especially in resource constrained settings. This study proposes an advanced machine learning approach to enhance CKD detection by evaluating four models: Random Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regression (LR), and a fine-tuned CatBoost algorithm. Specifically, among these, the fine-tuned CatBoost model demonstrated the best overall performance having an accuracy of 98.75%, an AUC of 0.9993 and a Kappa score of 97.35% of the studies. The proposed CatBoost model has used a nature inspired algorithm such as Simulated Annealing to select the most important features, Cuckoo Search to adjust outliers and grid search to fine tune its settings in such a way to achieve improved prediction accuracy. Features significance is explained by SHAP-a well-known XAI technique-for gaining transparency in the decision-making process of proposed model and bring up trust in diagnostic systems. Using SHAP, the significant clinical features were identified as specific gravity, serum creatinine, albumin, hemoglobin, and diabetes mellitus. The potential of advanced machine learning techniques in CKD detection is shown in this research, particularly for low income and middle-income healthcare settings where prompt and correct diagnoses are vital. This study seeks to provide a highly accurate, interpretable, and efficient diagnostic tool to add to efforts for early intervention and improved healthcare outcomes for all CKD patients.
Related papers
- An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm [0.0]
This study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images.
We utilize the newly developed Monkeypox Skin Lesion dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models.
Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%.
arXiv Detail & Related papers (2025-04-24T13:32:11Z) - Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example [8.488812000078125]
Infectious diseases, particularly COVID-19, continue to be a significant global health issue.<n>This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones.
arXiv Detail & Related papers (2025-04-01T12:41:53Z) - Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques [1.2302586529345994]
Heart disease remains a leading cause of morbidity and mortality worldwide.<n>We have developed a novel voting system with feature selection techniques to advance heart disease classification.<n>XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
Congenital heart disease (CHD) is a critical condition that demands early detection.<n>This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals.<n>We evaluated our model on several datasets, including the primary dataset from Bangladesh.
arXiv Detail & Related papers (2025-03-28T05:47:44Z) - Unified dimensionality reduction techniques in chronic liver disease detection [0.5242869847419834]
A number of machine learning algorithms are investigated in this study.<n>The main focus of our research is this dataset, which includes the medical records of 583 patients.<n>Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods.
arXiv Detail & Related papers (2024-12-30T18:35:02Z) - Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach [20.416923956241497]
We introduce a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm.
This system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions.
Our model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods.
arXiv Detail & Related papers (2024-11-21T18:21:42Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis [8.193689534916988]
Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disorder that severely impacts mobility and quality of life.<n>We propose a confidence-driven deep learning framework for early KOA detection, focusing on distinguishing KL-0 and KL-2 stages.<n> Experimental results demonstrate that the proposed framework achieves competitive accuracy, sensitivity, and specificity, comparable to those of expert radiologists.
arXiv Detail & Related papers (2023-03-23T11:57:50Z) - Federated attention consistent learning models for prostate cancer diagnosis and Gleason grading [23.911710601714162]
This study introduces a federated attention-consistent learning framework to address challenges associated with large-scale pathological images.
We assessed the effectiveness of FACL in cancer diagnosis and Gleason grading tasks using 19,461 whole-slide images of prostate cancer from multiple centers.
arXiv Detail & Related papers (2023-02-13T04:17:47Z) - Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation [31.51725965329019]
Deep learning methods have been proposed to assist clinicians in automatic COVID-19 diagnosis based on computed tomography imaging.
DenseNet121 achieves an average test accuracy of 99.44% in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and COVID-19 pneumonia.
arXiv Detail & Related papers (2022-08-09T12:24:53Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Detecting Chronic Kidney Disease(CKD) at the Initial Stage: A Novel
Hybrid Feature-selection Method and Robust Data Preparation Pipeline for
Different ML Techniques [0.0]
Chronic Kidney Disease (CKD) has infected almost 800 million people around the world. Around 1.7 million people die each year because of it.
Many researchers have applied distinct Machine Learning (ML) methods to detect CKD at an early stage, but detailed studies are still missing.
We present a structured and thorough method for dealing with the complexities of medical data with optimal performance.
arXiv Detail & Related papers (2022-03-02T20:38:49Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.