VisTabNet: Adapting Vision Transformers for Tabular Data
- URL: http://arxiv.org/abs/2501.00057v2
- Date: Fri, 25 Apr 2025 12:19:39 GMT
- Title: VisTabNet: Adapting Vision Transformers for Tabular Data
- Authors: Witold Wydmański, Ulvi Movsum-zada, Jacek Tabor, Marek Śmieja,
- Abstract summary: We propose a cross-modal transfer learning method, which allows for adapting Vision Transformer with pre-trained weights to process tabular data.<n>We show VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models.<n>We share our example implementation as a GitHub repository.
- Score: 7.6400146954285315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning. We share our example implementation as a GitHub repository available at https://github.com/wwydmanski/VisTabNet.
Related papers
- TabDPT: Scaling Tabular Foundation Models [20.00390825519329]
We show how to harness the power of real data to improve performance and generalization.
Our model achieves state-of-the-art performance on the CC18 (classification) and CTR23 (regression) benchmarks.
TabDPT also demonstrates strong scaling as both model size and amount of available data increase.
arXiv Detail & Related papers (2024-10-23T18:00:00Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - Deep Learning with Tabular Data: A Self-supervised Approach [0.0]
We have used a self-supervised learning approach in this study.
The aim is to find the most effective TabTransformer model representation of categorical and numerical features.
The research has presented with a novel approach by creating various variants of TabTransformer model.
arXiv Detail & Related papers (2024-01-26T23:12:41Z) - MambaTab: A Plug-and-Play Model for Learning Tabular Data [13.110156202816112]
This work introduces an innovative approach based on a structured state-space model (SSM), MambaTab, for tabular data.
MambaTab delivers superior performance while requiring significantly fewer parameters, as empirically validated on diverse benchmark datasets.
arXiv Detail & Related papers (2024-01-16T22:44:12Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Unlocking the Transferability of Tokens in Deep Models for Tabular Data [67.11727608815636]
Fine-tuning a pre-trained deep neural network has become a successful paradigm in various machine learning tasks.
In this paper, we propose TabToken, a method aims at enhancing the quality of feature tokens.
We introduce a contrastive objective that regularizes the tokens, capturing the semantics within and across features.
arXiv Detail & Related papers (2023-10-23T17:53:09Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - XTab: Cross-table Pretraining for Tabular Transformers [29.419276738753968]
XTab is a framework for cross-table pretraining of tabular transformers on datasets from various domains.
We show that XTab consistently boosts the generalizability, learning speed, and performance of multiple tabular transformers.
We achieve superior performance than other state-of-the-art tabular deep learning models on various tasks such as regression, binary, and multiclass classification.
arXiv Detail & Related papers (2023-05-10T12:17:52Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - PTab: Using the Pre-trained Language Model for Modeling Tabular Data [5.791972449406902]
Recent studies show that neural-based models are effective in learning contextual representation for Tabular data.
We propose a novel framework PTab, using the Pre-trained language model to model Tabular data.
Our method has achieved a better average AUC score in supervised settings compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-15T08:58:42Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - Efficient Training of Visual Transformers with Small-Size Datasets [64.60765211331697]
Visual Transformers (VTs) are emerging as an architectural paradigm alternative to Convolutional networks (CNNs)
We show that, despite having a comparable accuracy when trained on ImageNet, their performance on smaller datasets can be largely different.
We propose a self-supervised task which can extract additional information from images with only a negligible computational overhead.
arXiv Detail & Related papers (2021-06-07T16:14:06Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.