論文の概要: Human-like Bots for Tactical Shooters Using Compute-Efficient Sensors
- arxiv url: http://arxiv.org/abs/2501.00078v1
- Date: Mon, 30 Dec 2024 12:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:26.283753
- Title: Human-like Bots for Tactical Shooters Using Compute-Efficient Sensors
- Title(参考訳): コンピュータ高能率センサを用いた戦術シューターのためのヒューマンライクなボット
- Authors: Niels Justesen, Maria Kaselimi, Sam Snodgrass, Miruna Vozaru, Matthew Schlegel, Jonas Wingren, Gabriella A. B. Barros, Tobias Mahlmann, Shyam Sudhakaran, Wesley Kerr, Albert Wang, Christoffer Holmgård, Georgios N. Yannakakis, Sebastian Risi, Julian Togelius,
- Abstract要約: 本稿では、複雑な商用標準の2v2戦術シューティングゲームで遊ぶために、模倣学習を用いてニューラルネットワークを訓練するための新しい手法を提案する。
提案手法は, 空間情報を効率よく取得する小型のレイキャストセンサを用いて, 画期的, 画期的, 画期的, 画期的な知覚アーキテクチャを利用する。
人間の評価テストは、AIエージェントが人間のようなゲームプレイ体験を提供しながら、計算制約下で効率的に操作できることを確認します。
- 参考スコア(独自算出の注目度): 13.743654443419384
- License:
- Abstract: Artificial intelligence (AI) has enabled agents to master complex video games, from first-person shooters like Counter-Strike to real-time strategy games such as StarCraft II and racing games like Gran Turismo. While these achievements are notable, applying these AI methods in commercial video game production remains challenging due to computational constraints. In commercial scenarios, the majority of computational resources are allocated to 3D rendering, leaving limited capacity for AI methods, which often demand high computational power, particularly those relying on pixel-based sensors. Moreover, the gaming industry prioritizes creating human-like behavior in AI agents to enhance player experience, unlike academic models that focus on maximizing game performance. This paper introduces a novel methodology for training neural networks via imitation learning to play a complex, commercial-standard, VALORANT-like 2v2 tactical shooter game, requiring only modest CPU hardware during inference. Our approach leverages an innovative, pixel-free perception architecture using a small set of ray-cast sensors, which capture essential spatial information efficiently. These sensors allow AI to perform competently without the computational overhead of traditional methods. Models are trained to mimic human behavior using supervised learning on human trajectory data, resulting in realistic and engaging AI agents. Human evaluation tests confirm that our AI agents provide human-like gameplay experiences while operating efficiently under computational constraints. This offers a significant advancement in AI model development for tactical shooter games and possibly other genres.
- Abstract(参考訳): 人工知能(AI)は、Counter-Strikeのようなファーストパーソンシューティングゲームから、StarCraft IIのようなリアルタイム戦略ゲーム、Gran Turismoのようなレーシングゲームまで、複雑なビデオゲームのマスターを可能にした。
これらの成果は注目に値するが、これらのAI手法を商用ビデオゲーム生産に適用することは、計算上の制約のため、依然として困難である。
商業的なシナリオでは、ほとんどの計算リソースは3Dレンダリングに割り当てられ、AIメソッドの限られた能力は、高い計算能力、特にピクセルベースのセンサーに依存するものを必要とする。
さらに、ゲーム業界は、ゲームパフォーマンスの最大化にフォーカスした学術モデルとは異なり、プレイヤーエクスペリエンスを向上させるために、AIエージェントで人間のような行動を作成することを優先している。
本稿では、複雑な商用標準のVALORANTライクな2v2戦術シューティングゲームをプレイするために、模倣学習によるニューラルネットワークのトレーニング手法を提案する。
提案手法は, 空間情報を効率よく取得する, 小型のレイキャストセンサを用いて, 革新的な, ピクセルフリーな知覚アーキテクチャを利用する。
これらのセンサーは、従来の手法の計算オーバーヘッドを伴わずに、AIが有能に機能することを可能にする。
モデルは、人間の軌道データに基づく教師付き学習を用いて人間の行動を模倣するように訓練され、現実的で魅力的なAIエージェントとなる。
人間の評価テストは、AIエージェントが人間のようなゲームプレイ体験を提供しながら、計算制約下で効率的に操作できることを確認します。
これにより、戦術シューティングゲームやその他のジャンルのAIモデル開発が大幅に進歩する。
関連論文リスト
- Training Interactive Agent in Large FPS Game Map with Rule-enhanced Reinforcement Learning [10.637376058491224]
我々はTencent Gamesが開発したオンラインマルチプレイヤー競争型3D FPSゲームであるArena BreakoutにおけるゲームAIの実践的展開に焦点を当てた。
本稿では,大規模なゲームマップ内で対話可能なゲームAIシステムとして,PMCA(Private Military Company Agent)を提案する。
現代の3D FPSゲームにおけるナビゲーションと戦闘の課題に対処するために,ナビゲーションメッシュ(Navmesh)とシューティングルールと深部強化学習(NSRL)を組み合わせた手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T11:27:45Z) - Toward Human-AI Alignment in Large-Scale Multi-Player Games [24.784173202415687]
我々はXboxのBleeding Edge(100K+ゲーム)から広範囲にわたる人間のゲームプレイデータを解析する。
人間のプレイヤーは、戦闘飛行や探索飛行行動において多様性を示す一方で、AIプレイヤーは均一性に向かう傾向にある。
これらの大きな違いは、ヒューマンアラインアプリケーションにおけるAIの解釈可能な評価、設計、統合の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-05T22:55:33Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - Cognitive Models as Simulators: The Case of Moral Decision-Making [9.024707986238392]
本研究では,AIシステムと対話し,人間の代わりに認知モデルからフィードバックを収集することを目的としたシミュレータとして,$textitcognitive Modelのアイデアを裏付ける。
ここでは、ウルティマトゥムゲーム(UG)の認知モデルと相互作用することで、強化学習エージェントに公正さについて学ばせることにより、道徳的意思決定の文脈でこの考え方を活用する。
我々の研究は、人間のシミュレーターとして認知モデルを使用することがAIシステムのトレーニングに効果的なアプローチであり、AIに貢献するための計算認知科学の重要な方法を提供することを示唆している。
論文 参考訳(メタデータ) (2022-10-08T23:14:14Z) - Generative Personas That Behave and Experience Like Humans [3.611888922173257]
生成AIエージェントは、ルール、報酬、または人間のデモンストレーションとして表される特定の演奏行動の模倣を試みる。
我々は、行動手続き的ペルソナの概念をプレイヤー体験に適応させるよう拡張し、プレイヤーが人間のように行動し、経験できる生成エージェントを調べる。
その結果, 生成したエージェントは, 模倣を意図した人物のプレイスタイルや経験的反応を呈することが示唆された。
論文 参考訳(メタデータ) (2022-08-26T12:04:53Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Evaluation of Human-AI Teams for Learned and Rule-Based Agents in Hanabi [0.0]
我々は,ルールベースエージェントと学習ベースエージェントの両方を用いて,協力型カードゲームEmphHanabiにおける人間とAIエージェントのチームを評価する。
人間は、最先端の学習ベースのAIチームメイトよりも、ルールベースのAIチームメイトをはっきりと好みます。
論文 参考訳(メタデータ) (2021-07-15T22:19:15Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
論文 参考訳(メタデータ) (2021-01-06T21:14:10Z) - Mastering Atari with Discrete World Models [61.7688353335468]
本稿では,強力な世界モデルのコンパクトな潜伏空間における予測から純粋に振る舞いを学習する強化学習エージェントであるDreamerV2を紹介する。
DreamerV2は、Atariベンチマークにおいて、個別に訓練された世界モデル内での振る舞いを学習することで、55タスクの人間レベルのパフォーマンスを達成する最初のエージェントである。
論文 参考訳(メタデータ) (2020-10-05T17:52:14Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
エージェントがモデルフリーの手法よりも少ないインタラクションでAtariゲームを解くことができることを示す。
本実験は,エージェントと環境間の100kの相互作用の少ないデータ構造における,AtariゲームにおけるSimPLeの評価である。
論文 参考訳(メタデータ) (2019-03-01T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。