Text-to-Image GAN with Pretrained Representations
- URL: http://arxiv.org/abs/2501.00116v1
- Date: Mon, 30 Dec 2024 19:30:40 GMT
- Title: Text-to-Image GAN with Pretrained Representations
- Authors: Xiaozhou You, Jian Zhang,
- Abstract summary: Proposal is for a text-to-image GAN with pretrained representations.
Vision-empowered discriminator absorbs complex scene understanding ability.
High-capacity generator consists of multiple novel high-capacity fusion blocks.
- Score: 4.435186990319961
- License:
- Abstract: Generating desired images conditioned on given text descriptions has received lots of attention. Recently, diffusion models and autoregressive models have demonstrated their outstanding expressivity and gradually replaced GAN as the favored architectures for text-to-image synthesis. However, they still face some obstacles: slow inference speed and expensive training costs. To achieve more powerful and faster text-to-image synthesis under complex scenes, we propose TIGER, a text-to-image GAN with pretrained representations. To be specific, we propose a vision-empowered discriminator and a high-capacity generator. (i) The vision-empowered discriminator absorbs the complex scene understanding ability and the domain generalization ability from pretrained vision models to enhance model performance. Unlike previous works, we explore stacking multiple pretrained models in our discriminator to collect multiple different representations. (ii) The high-capacity generator aims to achieve effective text-image fusion while increasing the model capacity. The high-capacity generator consists of multiple novel high-capacity fusion blocks (HFBlock). And the HFBlock contains several deep fusion modules and a global fusion module, which play different roles to benefit our model. Extensive experiments demonstrate the outstanding performance of our proposed TIGER both on standard and zero-shot text-to-image synthesis tasks. On the standard text-to-image synthesis task, TIGER achieves state-of-the-art performance on two challenging datasets, which obtain a new FID 5.48 (COCO) and 9.38 (CUB). On the zero-shot text-to-image synthesis task, we achieve comparable performance with fewer model parameters, smaller training data size and faster inference speed. Additionally, more experiments and analyses are conducted in the Supplementary Material.
Related papers
- Multi-Head Attention Driven Dynamic Visual-Semantic Embedding for Enhanced Image-Text Matching [0.8611782340880084]
This study proposes an innovative visual semantic embedding model, Multi-Headed Consensus-Aware Visual-Semantic Embedding (MH-CVSE)
This model introduces a multi-head self-attention mechanism based on the consensus-aware visual semantic embedding model (CVSE) to capture information in multiple subspaces in parallel.
In terms of loss function design, the MH-CVSE model adopts a dynamic weight adjustment strategy to dynamically adjust the weight according to the loss value itself.
arXiv Detail & Related papers (2024-12-26T11:46:22Z) - TextCraftor: Your Text Encoder Can be Image Quality Controller [65.27457900325462]
Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation.
We propose a proposed fine-tuning approach, TextCraftor, to enhance the performance of text-to-image diffusion models.
arXiv Detail & Related papers (2024-03-27T19:52:55Z) - Synth$^2$: Boosting Visual-Language Models with Synthetic Captions and Image Embeddings [16.28853186016663]
We create synthetic image-text pairs for efficient and effective Visual-Language Models (VLMs) training.
Our method employs a pretrained text-to-image model to synthesize image embeddings from captions generated by an LLM.
Our VLM, finetuned on synthetic data achieves comparable performance to models trained solely on human-annotated data.
arXiv Detail & Related papers (2024-03-12T15:36:42Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
We introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient?
First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch.
Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model.
Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time.
arXiv Detail & Related papers (2024-01-11T18:59:14Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image
Diffusion Models [6.821399706256863]
W"urstchen is a novel architecture for text-to-image synthesis that combines competitive performance with unprecedented cost-effectiveness.
A key contribution of our work is to develop a latent diffusion technique in which we learn a detailed but extremely compact semantic image representation.
arXiv Detail & Related papers (2023-06-01T13:00:53Z) - StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale
Text-to-Image Synthesis [54.39789900854696]
StyleGAN-T addresses the specific requirements of large-scale text-to-image synthesis.
It significantly improves over previous GANs and outperforms distilled diffusion models in terms of sample quality and speed.
arXiv Detail & Related papers (2023-01-23T16:05:45Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Parti treats text-to-image generation as a sequence-to-sequence modeling problem.
Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens.
PartiPrompts (P2) is a new holistic benchmark of over 1600 English prompts.
arXiv Detail & Related papers (2022-06-22T01:11:29Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.