論文の概要: A review of faithfulness metrics for hallucination assessment in Large Language Models
- arxiv url: http://arxiv.org/abs/2501.00269v1
- Date: Tue, 31 Dec 2024 04:41:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:58.809301
- Title: A review of faithfulness metrics for hallucination assessment in Large Language Models
- Title(参考訳): 大規模言語モデルにおける幻覚評価のための忠実度指標の検討
- Authors: Ben Malin, Tatiana Kalganova, Nikoloas Boulgouris,
- Abstract要約: 本稿では, オープンエンド要約, 質問応答, 機械翻訳作業において, 忠実度を評価する方法を検討する。
LLMを忠実度評価器として用いることは、一般的に人間の判断と最も強く相関する指標である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This review examines the means with which faithfulness has been evaluated across open-ended summarization, question-answering and machine translation tasks. We find that the use of LLMs as a faithfulness evaluator is commonly the metric that is most highly correlated with human judgement. The means with which other studies have mitigated hallucinations is discussed, with both retrieval augmented generation (RAG) and prompting framework approaches having been linked with superior faithfulness, whilst other recommendations for mitigation are provided. Research into faithfulness is integral to the continued widespread use of LLMs, as unfaithful responses can pose major risks to many areas whereby LLMs would otherwise be suitable. Furthermore, evaluating open-ended generation provides a more comprehensive measure of LLM performance than commonly used multiple-choice benchmarking, which can help in advancing the trust that can be placed within LLMs.
- Abstract(参考訳): 本稿では, オープンエンド要約, 質問応答, 機械翻訳作業において, 忠実度を評価する方法を検討する。
LLMを忠実度評価器として用いることは、一般的に人間の判断と最も強く相関する指標である。
他の研究が幻覚を緩和する手段について論じ、検索強化世代(RAG)と、優れた忠実度に結びついているフレームワークアプローチの両立と、緩和のための他の推奨事項について論じる。
忠実性の研究はLLMの継続的な普及に不可欠であり、不誠実な反応はLLMが適切である多くの領域に重大なリスクをもたらす可能性がある。
さらに、オープン・エンド・ジェネレーションの評価は、一般的に使用されるマルチチョイス・ベンチマークよりも、LLMのパフォーマンスのより包括的な尺度を提供する。
関連論文リスト
- Information Anxiety in Large Language Models [21.574677910096735]
大規模言語モデル(LLM)は知識リポジトリとして高いパフォーマンスを示している。
本研究は, LLMの内部推論と検索機構を包括的に分析することにより, さらなる調査を行う。
我々の研究は、エンティティの人気の影響、クエリの定式化における語彙変化に対するモデルの感度、隠された状態表現の進行という3つの重要な側面に焦点を当てている。
論文 参考訳(メタデータ) (2024-11-16T14:28:33Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment [35.42539816648068]
本稿では,大規模言語モデル(LLM)の評価において考慮すべき重要な要素について,包括的に調査する。
この調査は、信頼性、安全性、公正性、誤用に対する抵抗性、説明可能性と推論、社会的規範への固執、堅牢性の7つの主要なカテゴリーをカバーしている。
結果は、一般に、より整合したモデルは、全体的な信頼性の観点から、より良いパフォーマンスを示す傾向があることを示している。
論文 参考訳(メタデータ) (2023-08-10T06:43:44Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。