論文の概要: Q3DE: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays
- arxiv url: http://arxiv.org/abs/2501.00331v1
- Date: Tue, 31 Dec 2024 08:04:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:12:27.698356
- Title: Q3DE: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays
- Title(参考訳): Q3DE:宇宙線によるマルチビットバーストエラーに対するフォールトトレラント量子コンピュータアーキテクチャ
- Authors: Yasunari Suzuki, Takanori Sugiyama, Tomochika Arai, Wang Liao, Koji Inoue, Teruo Tanimoto,
- Abstract要約: 本稿では、宇宙線によるマルチビットバーストエラー(MBBE)に対する耐性を適度な変化とオーバーヘッドで向上するFTQCアーキテクチャを提案する。
Q3DEは, MBBEの期間を1000倍に短縮し, 面積を半減することを示した。
- 参考スコア(独自算出の注目度): 2.5387423427791047
- License:
- Abstract: Demonstrating small error rates by integrating quantum error correction (QEC) into an architecture of quantum computing is the next milestone towards scalable fault-tolerant quantum computing (FTQC). Encoding logical qubits with superconducting qubits and surface codes is considered a promising candidate for FTQC architectures. In this paper, we propose an FTQC architecture, which we call Q3DE, that enhances the tolerance to multi-bit burst errors (MBBEs) by cosmic rays with moderate changes and overhead. There are three core components in Q3DE: in-situ anomaly DEtection, dynamic code DEformation, and optimized error DEcoding. In this architecture, MBBEs are detected only from syndrome values for error correction. The effect of MBBEs is immediately mitigated by dynamically increasing the encoding level of logical qubits and re-estimating probable recovery operation with the rollback of the decoding process. We investigate the performance and overhead of the Q3DE architecture with quantum-error simulators and demonstrate that Q3DE effectively reduces the period of MBBEs by 1000 times and halves the size of their region. Therefore, Q3DE significantly relaxes the requirement of qubit density and qubit chip size to realize FTQC. Our scheme is versatile for mitigating MBBEs, i.e., temporal variations of error properties, on a wide range of physical devices and FTQC architectures since it relies only on the standard features of topological stabilizer codes.
- Abstract(参考訳): 量子エラー補正(QEC)を量子コンピューティングのアーキテクチャに統合することで、小さなエラー率を示すことは、スケーラブルなフォールトトレラント量子コンピューティング(FTQC)への次のマイルストーンである。
超伝導量子ビットと表面符号で論理量子ビットを符号化することはFTQCアーキテクチャの有望な候補と考えられる。
本稿では、宇宙線によるマルチビットバーストエラー(MBBE)に対する耐性を適度な変化とオーバーヘッドで向上するFTQCアーキテクチャを提案する。
Q3DEには、in-situ anomaly Detection、Dynamic code Deformation、Optimed error Decodingの3つのコアコンポーネントがある。
このアーキテクチャでは、MBBEは誤り訂正のためのシンドローム値からのみ検出される。
MBBEの効果は、論理量子ビットのエンコーディングレベルを動的に増加させ、復号処理のロールバックにより予測可能なリカバリ操作を再見積することにより、即座に緩和される。
量子エラーシミュレータによるQ3DEアーキテクチャの性能とオーバーヘッドについて検討し、Q3DEがMBBEの時間を1000倍削減し、その領域を半分にすることを示した。
したがって、Q3DEはFTQCを実現するためにキュービット密度とキュービットチップサイズを著しく緩和する。
提案方式は,位相安定化符号の標準的な特徴のみに依存するため,多種多様な物理デバイスやFTQCアーキテクチャ上での誤り特性の時間的変動を緩和する。
関連論文リスト
- Architectures for Heterogeneous Quantum Error Correction Codes [13.488578754808676]
不均一なアーキテクチャは、普遍論理計算への明確な経路を提供する。
本研究では,アシラバスを用いてコード間データ移動のためのサーフェスコードとグロスコードを統合することを提案する。
アルゴリズムを特定の論理誤差率で実行する場合、物理量子ビットの最大6.42倍の減少を示す。
論文 参考訳(メタデータ) (2024-11-05T15:49:02Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Towards Distributed Quantum Error Correction for Distributed Quantum Computing [15.824983694947573]
3つの量子処理ユニット(QPU)に属する3つの物理量子ビットを用いて論理量子ビットを形成する、新しい量子ビットベースの分散量子誤り補正(DQEC)アーキテクチャを提案する。
本稿では,3つのQPUが協調して1ビットフリップと位相フリップの誤差を適切に解決できる量子状態を生成する方法について述べる。
提案アーキテクチャの機能的正しさは,Qiskitツールと安定化器ジェネレータを用いて評価する。
論文 参考訳(メタデータ) (2024-09-08T23:10:00Z) - Ambiguity Clustering: an accurate and efficient decoder for qLDPC codes [0.0]
独立にデコードされたクラスタに計測データを分割するアルゴリズムであるAmbiguity Clustering (AC)を導入する。
ACはBP-OSDより1~3桁速く、論理的忠実度は低下しない。
我々のCPU実装であるACは、144キュービットのGross符号を、中性原子や閉じ込められたイオン系に対してリアルタイムにデコードするのに十分高速です。
論文 参考訳(メタデータ) (2024-06-20T17:39:31Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Enabling Full-Stack Quantum Computing with Changeable Error-Corrected
Qubits [14.770636234849444]
我々は、変更可能な論理量子ビットに基づくFTQCの大規模設計空間を探索するために、CECQを提案する。
様々な量子プログラムの実験は、CECQの有効性を示す。
論文 参考訳(メタデータ) (2023-05-11T18:14:49Z) - Partially Fault-tolerant Quantum Computing Architecture with
Error-corrected Clifford Gates and Space-time Efficient Analog Rotations [0.5658123802733283]
NISQとFTQCのギャップを埋めるための量子コンピューティングアーキテクチャを提案する。
初期のFTQCデバイスでは、約1.72ドル 107ドル クリフォード演算と3.75ドル 104ドル 任意の回転を64個の論理量子ビット上で行うことができる。
論文 参考訳(メタデータ) (2023-03-23T11:21:41Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
計算状態から高エネルギー状態への量子情報の漏洩は、量子誤り訂正(QEC)の追求における大きな課題である。
本稿では,Sycamore量子プロセッサ上で,各サイクルの全てのキュービットから漏れが除去される距離3曲面符号と距離21ビットフリップ符号の実行を実演する。
本報告では, 論理状態を符号化したデータキュービットにおける定常リーク集団の10倍の減少と, デバイス全体の平均リーク人口の1/10〜3ドルの減少を報告した。
論文 参考訳(メタデータ) (2022-11-09T07:54:35Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Single-shot quantum error correction with the three-dimensional
subsystem toric code [77.34726150561087]
我々は新しいトポロジカル量子コード、三次元サブシステムトーリックコード(3D STC)を導入する。
3次元STCは、開境界条件の立方体格子上での重量の幾何的に局所的なパリティチェックを測定することで実現できる。
論文 参考訳(メタデータ) (2021-06-04T17:35:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。