論文の概要: Low-Rank Adaptation for Foundation Models: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2501.00365v1
- Date: Tue, 31 Dec 2024 09:38:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 16:54:31.579054
- Title: Low-Rank Adaptation for Foundation Models: A Comprehensive Review
- Title(参考訳): ファンデーションモデルに対する低ランク適応: 総合的なレビュー
- Authors: Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma, Qianru Zhang, Min Zhou, Irwin King, Rex Ying,
- Abstract要約: Low-Rank Adaptation (LoRA)は、これらの課題を緩和するための非常に有望なアプローチとして登場した。
この調査は、大規模な言語モデルから一般的な基礎モデルまで、LoRAテクニックの包括的なレビューを初めて提供する。
- 参考スコア(独自算出の注目度): 42.23155921954156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of foundation modelslarge-scale neural networks trained on diverse, extensive datasetshas revolutionized artificial intelligence, enabling unprecedented advancements across domains such as natural language processing, computer vision, and scientific discovery. However, the substantial parameter count of these models, often reaching billions or trillions, poses significant challenges in adapting them to specific downstream tasks. Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges, offering a parameter-efficient mechanism to fine-tune foundation models with minimal computational overhead. This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models, including recent techniques foundations, emerging frontiers and applications of low-rank adaptation across multiple domains. Finally, this survey discusses key challenges and future research directions in theoretical understanding, scalability, and robustness. This survey serves as a valuable resource for researchers and practitioners working with efficient foundation model adaptation.
- Abstract(参考訳): 多様なデータセットで訓練されたファンデーションモデルニューラルネットワークの急速な進歩は、人工知能に革命をもたらし、自然言語処理、コンピュータビジョン、科学的な発見といった領域における前例のない進歩を可能にした。
しかしながら、これらのモデルの実質的なパラメータ数は、しばしば数十億または数兆に達し、特定の下流タスクに適応する上で重大な課題を生じさせる。
Low-Rank Adaptation (LoRA) はこれらの課題を緩和するための非常に有望なアプローチとして登場し、最小計算オーバーヘッドで基礎モデルを微調整するためのパラメータ効率のメカニズムを提供する。
この調査は、LoRAテクニックを大規模言語モデルを超えて、最近の技術基盤、新しいフロンティア、複数のドメインにまたがる低ランク適応の適用を含む一般的な基礎モデルまで、初めて包括的なレビューを提供する。
最後に、理論的理解、スケーラビリティ、堅牢性における重要な課題と今後の研究方向性について論じる。
この調査は、効率的な基礎モデル適応に取り組んでいる研究者や実践者にとって貴重な情報源となっている。
関連論文リスト
- A Comprehensive Survey on Continual Learning in Generative Models [35.76314482046672]
本稿では,主流生成モデルに対する連続学習手法の包括的調査を行う。
これらのアプローチをアーキテクチャベース、正規化ベース、リプレイベースという3つのパラダイムに分類する。
我々は、トレーニング目標、ベンチマーク、コアバックボーンを含む、異なる生成モデルに対する連続的な学習設定を分析する。
論文 参考訳(メタデータ) (2025-06-16T02:27:25Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
強化学習(RL)は近年,大規模言語モデル(LLM)の推論能力の向上に強い可能性を示している。
本稿では,多分野にわたるLSM推論能力の向上を目的とした,新たなトレーニングパラダイムであるGeneral-Reasonerを提案する。
私たちは一連のモデルをトレーニングし、物理学、化学、金融、電子工学など幅広い分野をカバーする幅広いデータセットでそれらを評価します。
論文 参考訳(メタデータ) (2025-05-20T17:41:33Z) - Federated Low-Rank Adaptation for Foundation Models: A Survey [43.891813267708265]
Low-Rank Adaptation (LoRA)は、トレーニング可能なパラメータの数を劇的に減らし、微調整基礎モデルのリソース効率の良い代替手段を提供する。
本調査では,LoRAが基礎モデルのファインチューニングにどのように統合されているかを検討する。
論文 参考訳(メタデータ) (2025-05-16T07:19:51Z) - Offline Model-Based Optimization: Comprehensive Review [61.91350077539443]
オフライン最適化は、オフラインデータセットのみを使用してブラックボックス機能の最適化を目標とする、科学とエンジニアリングの基本的な課題である。
モデルベース最適化の最近の進歩は、オフライン固有の代理モデルと生成モデルを開発するために、ディープニューラルネットワークの一般化能力を活用している。
科学的な発見を加速させる効果が増大しているにもかかわらず、この分野は包括的なレビューを欠いている。
論文 参考訳(メタデータ) (2025-03-21T16:35:02Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
本稿では,新しい,スケーラブルで費用対効果の高いデータ合成手法であるScaleQuestを提案する。
スクラッチから多様な質問を生成することで、100万の問題解決ペアのデータセットを生成します。
私たちの実験では、データに基づいてトレーニングされたモデルが、既存のオープンソースデータセットより優れています。
論文 参考訳(メタデータ) (2024-10-24T12:42:04Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations [0.0]
本研究は,時系列予測タスクに対するFM,Large Language Modelsの直接的な適応手法であるLLIAMを提案する。
LLIAMとRecurrent Neural NetworksやTemporal Convolutional Networks、LLMベースのTimeLLMなど、さまざまな最先端DLアルゴリズムのパフォーマンスの比較を行った。
本研究の結果はLLIAMの有効性を実証し, この単純かつ汎用的なアプローチは, 複雑な修正を加える必要がなくなることなく, 有能な結果が得られることを示した。
論文 参考訳(メタデータ) (2024-10-15T12:14:01Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - A Survey on Model Compression for Large Language Models [21.768293256849113]
大規模言語モデル(LLM)は自然言語処理タスクをうまく変換した。
しかし、その大きなサイズと高い計算要求は、実用上の課題を提起する。
モデル圧縮はこれらの課題に対処するための重要な研究領域として浮上している。
論文 参考訳(メタデータ) (2023-08-15T08:31:05Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Methods for Estimating and Improving Robustness of Language Models [0.0]
大規模言語モデル(LLM)は、完全な意味論の複雑さよりも単純で表面的なテキスト関係を好むことで悪名高い欠陥を被っている。
本提案では, 学習領域外の一般化能力の弱い問題において, この問題の共通分母について検討する。
これらの指標のいくつかをトレーニング目的に組み込むことで、ニューラルネットワークの分散ロバスト性の向上が期待できる。
論文 参考訳(メタデータ) (2022-06-16T21:02:53Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
Survey [1.2031796234206134]
モデルに基づく強化学習は、環境サンプルの必要性を減らすために、環境力学の明示的なモデルを生成する。
深層モデルに基づく手法の課題は、低いサンプルの複雑さを維持しながら高い予測力を達成することである。
本稿では, 与えられた遷移を明示的に計画すること, 学習した遷移を明示的に計画すること, 計画と遷移の両方をエンドツーエンドで学習することの3つのアプローチに基づく分類法を提案する。
論文 参考訳(メタデータ) (2020-08-11T08:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。