KnowRA: Knowledge Retrieval Augmented Method for Document-level Relation Extraction with Comprehensive Reasoning Abilities
- URL: http://arxiv.org/abs/2501.00571v2
- Date: Sun, 05 Jan 2025 17:22:02 GMT
- Title: KnowRA: Knowledge Retrieval Augmented Method for Document-level Relation Extraction with Comprehensive Reasoning Abilities
- Authors: Chengcheng Mai, Yuxiang Wang, Ziyu Gong, Hanxiang Wang, Yihua Huang,
- Abstract summary: Document-level relation extraction (Doc-RE) aims to extract relations between entities across multiple sentences.
Most existing Doc-RE methods focus on optimizing single reasoning ability.
A knowledge retrieval augmented method, named KnowRA, was proposed to autonomously determine whether to accept external knowledge.
- Score: 15.643871248554355
- License:
- Abstract: Document-level relation extraction (Doc-RE) aims to extract relations between entities across multiple sentences. Therefore, Doc-RE requires more comprehensive reasoning abilities like humans, involving complex cross-sentence interactions between entities, contexts, and external general knowledge, compared to the sentence-level RE. However, most existing Doc-RE methods focus on optimizing single reasoning ability, but lack the ability to utilize external knowledge for comprehensive reasoning on long documents. To solve these problems, a knowledge retrieval augmented method, named KnowRA, was proposed with comprehensive reasoning to autonomously determine whether to accept external knowledge to assist DocRE. Firstly, we constructed a document graph for semantic encoding and integrated the co-reference resolution model to augment the co-reference reasoning ability. Then, we expanded the document graph into a document knowledge graph by retrieving the external knowledge base for common-sense reasoning and a novel knowledge filtration method was presented to filter out irrelevant knowledge. Finally, we proposed the axis attention mechanism to build direct and indirect associations with intermediary entities for achieving cross-sentence logical reasoning. Extensive experiments conducted on two datasets verified the effectiveness of our method compared to the state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/KnowRA.
Related papers
- REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - A Comprehensive Survey of Document-level Relation Extraction (2016-2023) [3.0204640945657326]
Document-level relation extraction (DocRE) is an active area of research in natural language processing (NLP)
This paper aims to provide a comprehensive overview of recent advances in this field, highlighting its different applications in comparison to sentence-level relation extraction.
arXiv Detail & Related papers (2023-09-28T12:43:32Z) - Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs [11.63334863772068]
Multi-document grounded dialogue systems (DGDS) answer users' requests by finding supporting knowledge from a collection of documents.
This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework.
arXiv Detail & Related papers (2023-02-23T08:28:29Z) - RHO ($\rho$): Reducing Hallucination in Open-domain Dialogues with
Knowledge Grounding [57.46495388734495]
This paper presents RHO ($rho$) utilizing the representations of linked entities and relation predicates from a knowledge graph (KG)
We propose (1) local knowledge grounding to combine textual embeddings with the corresponding KG embeddings; and (2) global knowledge grounding to equip RHO with multi-hop reasoning abilities via the attention mechanism.
arXiv Detail & Related papers (2022-12-03T10:36:34Z) - Retrieval Augmentation for Commonsense Reasoning: A Unified Approach [64.63071051375289]
We propose a unified framework of retrieval-augmented commonsense reasoning (called RACo)
Our proposed RACo can significantly outperform other knowledge-enhanced method counterparts.
arXiv Detail & Related papers (2022-10-23T23:49:08Z) - Enhancing Document-level Relation Extraction by Entity Knowledge
Injection [33.35887114768141]
Document-level relation extraction (RE) aims to identify the relations between entities throughout an entire document.
Large-scale knowledge graphs (KGs) contain a wealth of real-world facts, and can provide valuable knowledge to document-level RE.
We propose an entity knowledge injection framework to enhance current document-level RE models.
arXiv Detail & Related papers (2022-07-23T06:45:11Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
We argue that mitigating the long-tailed distribution problem is crucial for DocRE in the real-world scenario.
Motivated by the long-tailed distribution problem, we propose an Easy Relation Augmentation(ERA) method for improving DocRE.
arXiv Detail & Related papers (2022-05-21T06:15:11Z) - Variational Learning for Unsupervised Knowledge Grounded Dialogs [6.761874595503588]
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document.
We develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO)
To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
arXiv Detail & Related papers (2021-11-23T13:41:03Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues.
We develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs.
arXiv Detail & Related papers (2020-11-06T04:57:37Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.