ICONS: Influence Consensus for Vision-Language Data Selection
- URL: http://arxiv.org/abs/2501.00654v3
- Date: Tue, 10 Jun 2025 18:19:52 GMT
- Title: ICONS: Influence Consensus for Vision-Language Data Selection
- Authors: Xindi Wu, Mengzhou Xia, Rulin Shao, Zhiwei Deng, Pang Wei Koh, Olga Russakovsky,
- Abstract summary: Training vision-language models via instruction often relies on large mixtures of data spanning diverse tasks and domains.<n>Existing methods typically rely on task-agnostics to estimate data importance or focus on optimizing single tasks in isolation.<n>We introduce ICONS, a gradient-based Influence CONsensus approach for vision-language data Selection.
- Score: 39.454024810266176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training vision-language models via instruction tuning often relies on large mixtures of data spanning diverse tasks and domains. However, these mixtures frequently include redundant information, increasing computational costs without proportional performance gains, necessitating more effective data selection strategies. Existing methods typically rely on task-agnostic heuristics to estimate data importance or focus on optimizing single tasks in isolation, limiting their effectiveness in multitask settings. In this work, we introduce ICONS, a gradient-based Influence CONsensus approach for vision-language data Selection. Our method leverages first-order training dynamics to estimate the influence of individual training examples on validation performance and aggregates these estimates across tasks via majority voting over task-specific influences. This cross-task consensus identifies data points that are consistently valuable across tasks, enabling us to prioritize examples that drive overall performance. The voting-based design further mitigates issues such as score calibration and outlier sensitivity, resulting in robust and scalable data selection for diverse multitask mixtures. With only 20% of the data from LLaVA-665K and Cambrian-7M, our selected subsets retain 98.6% and 98.8% of the performance achieved with full datasets, and can even surpass full data training at a 60% selection ratio on LLaVA-665K. Our approach also generalizes to unseen tasks and architectures, demonstrating strong transfer. We release two compact, high-utility subsets, LLaVA-ICONS-133K and Cambrian-ICONS-1.4M, preserving impactful training examples for efficient and scalable vision-language model development.
Related papers
- Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities [15.92881751491451]
Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2).<n>Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others.<n>As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves.
arXiv Detail & Related papers (2025-01-21T14:00:43Z) - Mastering Collaborative Multi-modal Data Selection: A Focus on Informativeness, Uniqueness, and Representativeness [65.01625761120924]
We argue that a valuable sample should be informative of the task, non-redundant, and represent the sample distribution (i.e., not an outlier)
We propose a collaborative framework, DataTailor, which leverages three key principles--informativeness, uniqueness, and representativeness--for effective data selection.
Experiments on various benchmarks demonstrate that DataTailor achieves 100.8% of the performance of full-data fine-tuning with only 15% of the data.
arXiv Detail & Related papers (2024-12-09T08:36:10Z) - IterSelectTune: An Iterative Training Framework for Efficient Instruction-Tuning Data Selection [28.581257601441045]
We introduce $textbfIterSelectTune$, an efficient, cost-effective iterative training policy for selecting high-quality instruction data.
By fine-tuning on approximately 20% of the source data, our method consistently outperforms models fine-tuned on the full dataset.
arXiv Detail & Related papers (2024-10-17T11:48:57Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Concept-skill Transferability-based Data Selection for Large Vision-Language Models [56.0725292404808]
We introduce COINCIDE, an effective and scalable data selection technique for training vision-language models.
We cluster the training data using internal activations from a small model, which identifies concept-skill compositions needed by a target LVLM.
Experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines.
arXiv Detail & Related papers (2024-06-16T16:15:20Z) - Less is More: High-value Data Selection for Visual Instruction Tuning [127.38740043393527]
We propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost.
Our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks.
arXiv Detail & Related papers (2024-03-14T16:47:25Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.