論文の概要: AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs
- arxiv url: http://arxiv.org/abs/2501.00743v1
- Date: Wed, 01 Jan 2025 06:19:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:12.573462
- Title: AttriReBoost: A Gradient-Free Propagation Optimization Method for Cold Start Mitigation in Attribute Missing Graphs
- Title(参考訳): AttriReBoost:属性不足グラフにおけるコールドスタート緩和のための勾配自由伝搬最適化手法
- Authors: Mengran Li, Chaojun Ding, Junzhou Chen, Wenbin Xing, Cong Ye, Ronghui Zhang, Songlin Zhuang, Jia Hu, Tony Z. Qiu, Huijun Gao,
- Abstract要約: グラフ学習では欠落問題が多く,グラフニューラルネットワーク(GNN)の偏りが生じる。
特徴の伝播に依存する既存の手法は、特に属性リセットや低次ノードを扱う場合、コールドスタート問題を起こしやすい。
本稿では,属性欠落グラフにおけるコールドスタート問題を軽減するために,伝搬法を取り入れた新しい手法であるAttriReBoost(ARB)を提案する。
- 参考スコア(独自算出の注目度): 17.730853388683286
- License:
- Abstract: Missing attribute issues are prevalent in the graph learning, leading to biased outcomes in Graph Neural Networks (GNNs). Existing methods that rely on feature propagation are prone to cold start problem, particularly when dealing with attribute resetting and low-degree nodes, which hinder effective propagation and convergence. To address these challenges, we propose AttriReBoost (ARB), a novel method that incorporates propagation-based method to mitigate cold start problems in attribute-missing graphs. ARB enhances global feature propagation by redefining initial boundary conditions and strategically integrating virtual edges, thereby improving node connectivity and ensuring more stable and efficient convergence. This method facilitates gradient-free attribute reconstruction with lower computational overhead. The proposed method is theoretically grounded, with its convergence rigorously established. Extensive experiments on several real-world benchmark datasets demonstrate the effectiveness of ARB, achieving an average accuracy improvement of 5.11% over state-of-the-art methods. Additionally, ARB exhibits remarkable computational efficiency, processing a large-scale graph with 2.49 million nodes in just 16 seconds on a single GPU. Our code is available at https://github.com/limengran98/ARB.
- Abstract(参考訳): 属性の欠落はグラフ学習で発生し、グラフニューラルネットワーク(GNN)のバイアスのある結果につながる。
特徴伝播に依存する既存の手法は、特に属性リセットや低次ノードを扱う場合、コールドスタート問題を起こしやすいため、効果的な伝播と収束を妨げている。
これらの課題に対処するために,属性欠落グラフにおけるコールドスタート問題を緩和する伝搬法を取り入れた新しい手法であるAttriReBoost (ARB)を提案する。
ARBは、初期境界条件を再定義し、仮想エッジを戦略的に統合することにより、グローバルな特徴伝達を強化し、ノード接続を改善し、より安定かつ効率的な収束を保証する。
この手法は計算オーバーヘッドを小さくして、勾配のない属性再構成を容易にする。
提案手法は理論的に基礎を置いており,その収束性は厳格に確立されている。
いくつかの実世界のベンチマークデータセットに対する大規模な実験は、最先端の手法よりも平均で5.11%の精度向上を達成し、ABBの有効性を実証している。
さらに、ABBは驚くべき計算効率を示し、単一のGPU上でわずか16秒で2.49万ノードの大規模グラフを処理する。
私たちのコードはhttps://github.com/limengran98/ARBで利用可能です。
関連論文リスト
- Virtual Node Generation for Node Classification in Sparsely-Labeled Graphs [2.0060301665996016]
本稿では,グラフに付加されたラベル付きノードとして,少数の高品質な合成ノードを注入する新しいノード生成手法を提案する。
一般的なグラフ事前学習(自己教師付き学習)、半教師付き学習、メタ学習法と互換性がある。
実験では、公開されている10のデータセットに対して、14のベースラインに対して統計的に有意なパフォーマンス改善を実証した。
論文 参考訳(メタデータ) (2024-09-12T02:36:44Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Disentangled Condensation for Large-scale Graphs [29.384060761810172]
グラフニューラルネットワーク(GNN)の高価なトレーニングコストを節約するための興味深いテクニックとして、グラフ凝縮が登場した。
本稿では, 凝縮過程を2段階のGNNフリーパラダイムに分解し, ノードを独立に凝縮し, エッジを生成することを提案する。
この単純で効果的なアプローチは、中規模グラフの精度に匹敵する精度で最先端の手法よりも少なくとも10倍早く達成できる。
論文 参考訳(メタデータ) (2024-01-18T09:59:00Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Mitigating Overfitting in Graph Neural Networks via Feature and Hyperplane Perturbation [3.4498722449655066]
グラフニューラルネットワーク(GNN)のための新しいデータ拡張戦略を提案する。
初期特徴と超平面の両方を反転させることで、学習可能なパラメータをより正確に更新する訓練スペースを新たに作成する。
実世界のデータセットを用いた実験により,提案手法はノード分類精度を46.5%向上させることができた。
論文 参考訳(メタデータ) (2022-11-28T05:54:24Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
グラフ計算のための特徴指向最適化を備えたスケーラブルグラフニューラルネットワーク(GNN)であるSCARAを提案する。
SCARAはノードの特徴からグラフの埋め込みを効率的に計算し、機能の結果を選択して再利用することでオーバーヘッドを減らします。
利用可能な最大10億のGNNデータセットであるPapers100M(1110万ノード、1.6Bエッジ)を100秒でプリ計算するのが効率的である。
論文 参考訳(メタデータ) (2022-07-19T10:32:11Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
グラフ信号処理は、センサー、社会交通脳ネットワーク、ポイントクラウド処理、グラフネットワークなど、多くのアプリケーションにおいてユビキタスなタスクである。
凸非依存型深部ADMM(ADMM)に基づく2つの復元手法を提案する。
提案手法のパラメータはエンドツーエンドでトレーニング可能である。
論文 参考訳(メタデータ) (2021-06-30T08:57:01Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。