論文の概要: Graph Signal Restoration Using Nested Deep Algorithm Unrolling
- arxiv url: http://arxiv.org/abs/2106.15910v1
- Date: Wed, 30 Jun 2021 08:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 15:19:41.546579
- Title: Graph Signal Restoration Using Nested Deep Algorithm Unrolling
- Title(参考訳): nested deep algorithm unrolling を用いたグラフ信号復元
- Authors: Masatoshi Nagahama, Koki Yamada, Yuichi Tanaka, Stanley H. Chan,
Yonina C. Eldar
- Abstract要約: グラフ信号処理は、センサー、社会交通脳ネットワーク、ポイントクラウド処理、グラフネットワークなど、多くのアプリケーションにおいてユビキタスなタスクである。
凸非依存型深部ADMM(ADMM)に基づく2つの復元手法を提案する。
提案手法のパラメータはエンドツーエンドでトレーニング可能である。
- 参考スコア(独自算出の注目度): 85.53158261016331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph signal processing is a ubiquitous task in many applications such as
sensor, social, transportation and brain networks, point cloud processing, and
graph neural networks. Graph signals are often corrupted through sensing
processes, and need to be restored for the above applications. In this paper,
we propose two graph signal restoration methods based on deep algorithm
unrolling (DAU). First, we present a graph signal denoiser by unrolling
iterations of the alternating direction method of multiplier (ADMM). We then
propose a general restoration method for linear degradation by unrolling
iterations of Plug-and-Play ADMM (PnP-ADMM). In the second method, the unrolled
ADMM-based denoiser is incorporated as a submodule. Therefore, our restoration
method has a nested DAU structure. Thanks to DAU, parameters in the proposed
denoising/restoration methods are trainable in an end-to-end manner. Since the
proposed restoration methods are based on iterations of a (convex) optimization
algorithm, the method is interpretable and keeps the number of parameters small
because we only need to tune graph-independent regularization parameters. We
solve two main problems in existing graph signal restoration methods: 1)
limited performance of convex optimization algorithms due to fixed parameters
which are often determined manually. 2) large number of parameters of graph
neural networks that result in difficulty of training. Several experiments for
graph signal denoising and interpolation are performed on synthetic and
real-world data. The proposed methods show performance improvements to several
existing methods in terms of root mean squared error in both tasks.
- Abstract(参考訳): グラフ信号処理は、センサ、社会、輸送、脳ネットワーク、ポイントクラウド処理、グラフニューラルネットワークといった多くのアプリケーションにおいて、ユビキタスなタスクである。
グラフ信号はしばしばセンシングプロセスによって破壊され、上記のアプリケーションのために復元する必要がある。
本稿では,Deep Algorithm Unrolling (DAU) に基づく2つのグラフ信号復元手法を提案する。
まず,乗算器の交互方向法(ADMM)の繰り返しを解き放つグラフ信号デノイザを提案する。
次に,プラグアンドプレイADMM (PnP-ADMM) の繰り返しをアンロールすることで,線形劣化の一般的な復元法を提案する。
第2の方法は、アンロールされたADMMベースのデノイザをサブモジュールとして組み込む。
したがって,本手法はネストDAU構造を有する。
DAUのおかげで、提案手法のパラメータはエンドツーエンドで訓練できる。
提案手法は(凸)最適化アルゴリズムの反復に基づいており、グラフ独立正規化パラメータのみをチューニングする必要があるため、この手法は解釈可能でありパラメータ数を小さく維持できる。
1) 手動で決定される固定パラメータによる凸最適化アルゴリズムの性能の制限。
2) 学習が困難となるグラフニューラルネットワークのパラメータが多数存在する。
合成および実世界のデータに対して,グラフ信号の復調と補間に関する実験を行った。
提案手法は,両タスクにおけるルート平均二乗誤差の観点から,既存手法の性能改善を示す。
関連論文リスト
- Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
我々は,潜伏グラフ上でスムーズな観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発した。
我々のモダス・オペランは、グラフ信号を逐次処理し、メモリと計算コストを抑えることです。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:12:03Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
我々は,無線通信における多くの問題に固有の2種類のリレーショナル先行性を活用するために,グラフ強化学習を利用する。
グラフ強化学習フレームワークを体系的に設計するために,まず状態行列を状態グラフに変換する方法を提案する。
次に,所望の置換特性を満たすグラフニューラルネットワークの汎用手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T08:02:54Z) - Learning Sparse Graphs via Majorization-Minimization for Smooth Node
Signals [8.140698535149042]
本稿では,その隣接行列を推定することにより,スパース重み付きグラフを学習するアルゴリズムを提案する。
提案アルゴリズムは,本論文におけるいくつかの既存手法よりも,平均反復回数の観点から,より高速に収束することを示す。
論文 参考訳(メタデータ) (2022-02-06T17:06:13Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Message Passing Descent for Efficient Machine Learning [4.416484585765027]
機械学習におけるbfデータフィッティング(DF)問題に対する反復最適化手法を提案する。
このアプローチは、df問題のbfグラフィカルモデル表現に依存している。
本稿では,モデルDF関数の多項式表現に依存する bf Message Passage Descent アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-16T12:22:54Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Learning to solve TV regularized problems with unrolled algorithms [18.241062505073234]
トータル・バージョニング(Total Variation、TV)は、一方向定値信号を促進する一般的な正規化戦略である。
そこで我々は,2つのアプローチを開発し,そのメリットと限界を記述し,反復的な手順よりも実際に改善できる体制について議論する。
論文 参考訳(メタデータ) (2020-10-19T14:19:02Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。