論文の概要: Decoding the Flow: CauseMotion for Emotional Causality Analysis in Long-form Conversations
- arxiv url: http://arxiv.org/abs/2501.00778v1
- Date: Wed, 01 Jan 2025 09:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:17:28.448305
- Title: Decoding the Flow: CauseMotion for Emotional Causality Analysis in Long-form Conversations
- Title(参考訳): 流れの復号:長文会話における感情的因果分析のための因果運動
- Authors: Yuxuan Zhang, Yulong Li, Zichen Yu, Feilong Tang, Zhixiang Lu, Chong Li, Kang Dang, Jionglong Su,
- Abstract要約: causeMotionは、Retrieval-Augmented Generation (RAG)とMultimodal fusionを基盤とした、長期にわたる感情因果推論フレームワークである。
RAGとスライディングウィンドウ機構を統合することで、コンテキストに関連のある対話セグメントを効果的に検索し、活用する。
CauseMotionと統合されたGLM-4は、オリジナルのモデルよりも因果精度が8.7%向上し、GPT-4oを1.2%上回る。
公開されているDiaASQデータセット上で、Co causedMotion-GLM-4は、精度、F1スコア、因果推論精度の最先端結果を達成する。
- 参考スコア(独自算出の注目度): 22.000288488609733
- License:
- Abstract: Long-sequence causal reasoning seeks to uncover causal relationships within extended time series data but is hindered by complex dependencies and the challenges of validating causal links. To address the limitations of large-scale language models (e.g., GPT-4) in capturing intricate emotional causality within extended dialogues, we propose CauseMotion, a long-sequence emotional causal reasoning framework grounded in Retrieval-Augmented Generation (RAG) and multimodal fusion. Unlike conventional methods relying only on textual information, CauseMotion enriches semantic representations by incorporating audio-derived features-vocal emotion, emotional intensity, and speech rate-into textual modalities. By integrating RAG with a sliding window mechanism, it effectively retrieves and leverages contextually relevant dialogue segments, thus enabling the inference of complex emotional causal chains spanning multiple conversational turns. To evaluate its effectiveness, we constructed the first benchmark dataset dedicated to long-sequence emotional causal reasoning, featuring dialogues with over 70 turns. Experimental results demonstrate that the proposed RAG-based multimodal integrated approach, the efficacy of substantially enhances both the depth of emotional understanding and the causal inference capabilities of large-scale language models. A GLM-4 integrated with CauseMotion achieves an 8.7% improvement in causal accuracy over the original model and surpasses GPT-4o by 1.2%. Additionally, on the publicly available DiaASQ dataset, CauseMotion-GLM-4 achieves state-of-the-art results in accuracy, F1 score, and causal reasoning accuracy.
- Abstract(参考訳): ロングシーケンス因果推論は、時系列データ内の因果関係を明らかにすることを目的としているが、複雑な依存関係や因果関係の検証の難しさによって妨げられている。
本稿では,大規模言語モデル(例えばGPT-4)の,拡張対話における複雑な情緒的因果関係を捉える際の限界に対処するため,Retrieval-Augmented Generation (RAG) とマルチモーダル融合を基盤とした長時間の感情的因果関係推論フレームワークであるCouchMotionを提案する。
従来のテキスト情報にのみ依存する手法とは異なり、Co causedMotionは音声から発せられる特徴-声の感情、感情の強さ、発話速度-テキストのモダリティを組み込むことで意味表現を強化している。
RAGをスライディングウインドウ機構に統合することにより、コンテキストに関連のある対話セグメントを効果的に検索し、活用することにより、複数の会話ターンにまたがる複雑な感情的因果連鎖の推論を可能にする。
その効果を評価するために,70回以上の対話を特徴とする長時間の感情因果推論専用のベンチマークデータセットを構築した。
実験結果から,RAGに基づくマルチモーダル統合手法の有効性は,感情理解の深度と大規模言語モデルの因果推論能力の両方を大幅に向上させることが示された。
CauseMotionと統合されたGLM-4は、オリジナルのモデルよりも因果精度が8.7%向上し、GPT-4oを1.2%上回る。
さらに、公開されているDiaASQデータセットでは、Co causedMotion-GLM-4が精度、F1スコア、因果推論精度の最先端結果を達成する。
関連論文リスト
- Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training [14.450673163785094]
文脈認識感情認識(CAER)は、対象者の感情を認識するための貴重な意味的手がかりを提供する。
現在のアプローチは、コンテキストから知覚的に重要な表現を抽出する洗練された構造を設計することに集中している。
共同設立者を非難するためのCCIM(Contextual Causal Intervention Module)を提案する。
論文 参考訳(メタデータ) (2024-07-06T05:29:02Z) - Position Debiasing Fine-Tuning for Causal Perception in Long-Term Dialogue [26.171522810457486]
対話システムの中核は、広範囲な対話履歴に基づいて、関連性、情報的、人間的な応答を生成することである。
そのようなモデルには、本来ある位置バイアスという自然な欠点がある。
本稿では,摂動に基づく因果変数探索手法を用いた因果知覚長期対話フレームワーク(CPD)を提案する。
論文 参考訳(メタデータ) (2024-06-04T06:33:13Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Context De-confounded Emotion Recognition [12.037240778629346]
コンテキストアウェア感情認識(CAER)は、対象者の感情状態を文脈情報で知覚することを目的としている。
長年見過ごされてきた問題は、既存のデータセットのコンテキストバイアスが感情状態のかなり不均衡な分布をもたらすことである。
本稿では、そのようなバイアスの影響からモデルを切り離し、CAERタスクにおける変数間の因果関係を定式化する因果関係に基づく視点を提供する。
論文 参考訳(メタデータ) (2023-03-21T15:12:20Z) - EmotionIC: emotional inertia and contagion-driven dependency modeling for emotion recognition in conversation [34.24557248359872]
本稿では,ERCタスクに対する感情的慣性・伝染型依存性モデリング手法(EmotionIC)を提案する。
EmotionICは3つの主要コンポーネント、すなわちIDマスク付きマルチヘッド注意(IMMHA)、対話型Gated Recurrent Unit(DiaGRU)、Skip-chain Conditional Random Field(SkipCRF)から構成されている。
実験結果から,提案手法は4つのベンチマークデータセットにおいて,最先端のモデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2023-03-20T13:58:35Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
本稿では,声帯からの感情認識のための連鎖回帰モデルに基づく階層的枠組みを提案する。
データスパシティの課題に対処するため、レイヤワイドおよび時間アグリゲーションモジュールを備えた自己教師付き学習(SSL)表現も使用しています。
提案されたシステムは、ACII Affective Vocal Burst (A-VB) Challenge 2022に参加し、「TWO」および「CULTURE」タスクで第1位となった。
論文 参考訳(メタデータ) (2023-03-14T16:08:45Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - M2R2: Missing-Modality Robust emotion Recognition framework with
iterative data augmentation [6.962213869946514]
学習された共通表現による反復的データ拡張で感情認識モデルを訓練するミス・モダリティ・ロバスト感情認識(M2R2)を提案する。
Party Attentive Network (PANet)は、すべての話者の状態と状況を追跡する感情を分類するために設計された。
論文 参考訳(メタデータ) (2022-05-05T09:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。