論文の概要: Information Sifting Funnel: Privacy-preserving Collaborative Inference Against Model Inversion Attacks
- arxiv url: http://arxiv.org/abs/2501.00824v2
- Date: Thu, 16 Jan 2025 02:38:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 18:38:06.10471
- Title: Information Sifting Funnel: Privacy-preserving Collaborative Inference Against Model Inversion Attacks
- Title(参考訳): Information Sifting Funnel: モデル反転攻撃に対するプライバシ保護協調推論
- Authors: Rongke Liu,
- Abstract要約: ニューラルネットワークと推論タスクの複雑さは、リソース制約されたエッジデバイスに重大な課題をもたらす。
コラボレーション推論は、エッジデバイスに浅い特徴抽出を割り当て、さらなる推論のために機能をクラウドにオフロードすることで、これを緩和する。
協調推論のためのプライバシー保護フレームワークSiftFunnelを提案する。
- 参考スコア(独自算出の注目度): 9.092229145160763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of neural networks and inference tasks, coupled with demands for computational efficiency and real-time feedback, poses significant challenges for resource-constrained edge devices. Collaborative inference mitigates this by assigning shallow feature extraction to edge devices and offloading features to the cloud for further inference, reducing computational load. However, transmitted features remain susceptible to model inversion attacks (MIAs), which can reconstruct original input data. Current defenses, such as perturbation and information bottleneck techniques, offer explainable protection but face limitations, including the lack of standardized criteria for assessing MIA difficulty, challenges in mutual information estimation, and trade-offs among usability, privacy, and deployability. To address these challenges, we introduce the first criterion to evaluate MIA difficulty in collaborative inference, supported by theoretical analysis of existing attacks and defenses, validated using experiments with the Mutual Information Neural Estimator (MINE). Based on these findings, we propose SiftFunnel, a privacy-preserving framework for collaborative inference. The edge model is trained with linear and non-linear correlation constraints to reduce redundant information in transmitted features, enhancing privacy protection. Label smoothing and a cloud-based upsampling module are added to balance usability and privacy. To improve deployability, the edge model incorporates a funnel-shaped structure and attention mechanisms, preserving both privacy and usability. Extensive experiments demonstrate that SiftFunnel outperforms state-of-the-art defenses against MIAs, achieving superior privacy protection with less than 3% accuracy loss and striking an optimal balance among usability, privacy, and practicality.
- Abstract(参考訳): ニューラルネットワークと推論タスクの複雑さは、計算効率とリアルタイムフィードバックの要求と相まって、リソース制約されたエッジデバイスに重大な課題をもたらす。
コラボレーション推論は、エッジデバイスに浅い特徴抽出を割り当て、さらなる推論のために機能をクラウドにオフロードすることでこれを緩和し、計算負荷を低減します。
しかし、送信された特徴は、元の入力データを再構成できるモデル逆攻撃(MIA)の影響を受けやすいままである。
摂動や情報ボトルネック技術といった現在の防衛は、MIAの難易度を評価するための標準化された基準の欠如、相互情報推定の課題、ユーザビリティ、プライバシ、デプロイ可能性間のトレードオフなど、説明可能な保護を提供するが、制限に直面している。
これらの課題に対処するために、MINE(Mutual Information Neural Estimator)を用いた実験を用いて、既存の攻撃と防御の理論的解析によって支援された協調推論におけるMIAの難しさを評価するための最初の基準を導入する。
これらの知見に基づいて,協調推論のためのプライバシー保護フレームワークSiftFunnelを提案する。
エッジモデルは、送信された特徴の冗長な情報を低減し、プライバシー保護を強化するために、線形および非線形の相関制約で訓練される。
ユーザビリティとプライバシのバランスをとるために,ラベルスムーシングとクラウドベースのアップサンプリングモジュールが追加されている。
デプロイ性を改善するため、エッジモデルは、プライバシとユーザビリティの両方を保存するために、ファンネル型の構造とアテンションメカニズムを取り入れている。
大規模な実験では、SiftFunnelがMIAに対する最先端の防御を上回り、3%未満の精度で優れたプライバシ保護を達成し、ユーザビリティ、プライバシ、実用性の最適なバランスを達成している。
関連論文リスト
- Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems [89.35169042718739]
協調推論により、クラウドサーバに機密データを公開することなく、エンドユーザは強力なディープラーニングモデルを活用することができる。
近年の研究では、これらの中間機能は、情報が漏洩し、生データをモデル反転攻撃(MIA)によって再構築できるため、プライバシーを十分に保持できないことが判明している。
この研究はまず、与えられた中間特徴の入力の条件エントロピーが、任意のMIAの下での再構成平均二乗誤差(MSE)の保証された下界を与えることを理論的に証明する。
そして、ガウス混合推定に基づいて、この条件付きエントロピーを有界化するための微分可能かつ可解な尺度を導出し、逆ロバスト性を高める条件付きエントロピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-01T07:15:21Z) - Preventing Non-intrusive Load Monitoring Privacy Invasion: A Precise Adversarial Attack Scheme for Networked Smart Meters [99.90150979732641]
本稿では,敵攻撃に基づく革新的な手法を提案する。
このスキームは、NILMモデルがアプライアンスレベルのプライバシに違反するのを効果的に防ぎ、ユーザの正確な請求計算を確実にする。
提案手法はトランスファービリティを示し,他の様々なNILMモデルに適用可能な1つのターゲットモデルから発生する摂動信号を生成する。
論文 参考訳(メタデータ) (2024-12-22T07:06:46Z) - SUMI-IFL: An Information-Theoretic Framework for Image Forgery Localization with Sufficiency and Minimality Constraints [66.85363924364628]
イメージフォージェリーローカライゼーション (IFL) は, 改ざん画像誤用を防止し, 社会安全を守るための重要な技術である。
本稿では,情報理論IFL フレームワーク SUMI-IFL について紹介する。
論文 参考訳(メタデータ) (2024-12-13T09:08:02Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Center-Based Relaxed Learning Against Membership Inference Attacks [3.301728339780329]
我々は,Central-based relaxed learning (CRL)と呼ばれるアーキテクチャに依存しない新しい学習パラダイムを提案する。
CRLは任意の分類モデルに適応し、モデル一般化可能性の損失を最小限に抑え、プライバシ保護を提供する。
モデルキャパシティやデータコストを必要とせずに、このアプローチが同等のパフォーマンスを示すことを実証的に示しています。
論文 参考訳(メタデータ) (2024-04-26T19:41:08Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - PATROL: Privacy-Oriented Pruning for Collaborative Inference Against
Model Inversion Attacks [15.257413246220032]
協調推論は、リソース制約されたエッジデバイスが最先端のディープニューラルネットワーク(DNN)を使用して推論を実行できるようにする、有望なソリューションである。
近年の研究では、モデルインバージョンアタック(MIA)が中間結果から入力データを再構築し、協調推論に深刻なプライバシー上の懸念を呈している。
本稿では、プライバシ指向のプルーニングを開発し、協調推論のプライバシ、効率、実用性をバランスさせる、PATROLと呼ばれる実行可能なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-20T16:09:07Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - FeDiSa: A Semi-asynchronous Federated Learning Framework for Power
System Fault and Cyberattack Discrimination [1.0621485365427565]
本稿では,電力系統故障とサイバーアタック識別のための半非同期フェデレーション学習フレームワークFeDiSaを提案する。
産業用制御システムデータセットを用いた提案フレームワークの実験により,データ機密性を維持しつつ,通信遅延やストラグラーの悪影響を最小限に抑えながら,攻撃検出精度が向上した。
論文 参考訳(メタデータ) (2023-03-28T13:34:38Z) - FedDef: Defense Against Gradient Leakage in Federated Learning-based
Network Intrusion Detection Systems [15.39058389031301]
FLベースのNIDS向けに設計された2つのプライバシ評価指標を提案する。
提案するFedDefは,理論的保証を備えた新しい最適化型入力摂動防御戦略である。
4つのデータセットに対する4つの既存の防御を実験的に評価し、プライバシ保護の観点から、我々の防衛がすべてのベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-08T15:23:30Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。