論文の概要: Recognizing Artistic Style of Archaeological Image Fragments Using Deep Style Extrapolation
- arxiv url: http://arxiv.org/abs/2501.00836v1
- Date: Wed, 01 Jan 2025 13:38:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:25.686393
- Title: Recognizing Artistic Style of Archaeological Image Fragments Using Deep Style Extrapolation
- Title(参考訳): ディープスタイル外挿を用いた考古学的画像フラグメントの芸術的スタイルの認識
- Authors: Gur Elkin, Ofir Itzhak Shahar, Yaniv Ohayon, Nadav Alali, Ohad Ben-Shahar,
- Abstract要約: 考古学的な発掘で得られた古代の美術品は通常、ある程度の断片化と物理的劣化に悩まされている。
本研究では,画像断片の芸術的スタイルを予測するための一般化されたディープラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.7233796151875245
- License:
- Abstract: Ancient artworks obtained in archaeological excavations usually suffer from a certain degree of fragmentation and physical degradation. Often, fragments of multiple artifacts from different periods or artistic styles could be found on the same site. With each fragment containing only partial information about its source, and pieces from different objects being mixed, categorizing broken artifacts based on their visual cues could be a challenging task, even for professionals. As classification is a common function of many machine learning models, the power of modern architectures can be harnessed for efficient and accurate fragment classification. In this work, we present a generalized deep-learning framework for predicting the artistic style of image fragments, achieving state-of-the-art results for pieces with varying styles and geometries.
- Abstract(参考訳): 考古学的な発掘で得られた古代の美術品は通常、ある程度の断片化と物理的劣化に悩まされている。
多くの場合、異なる時代の複数の遺物や芸術様式の断片が同じ場所にある。
それぞれの断片にはソースに関する部分的な情報のみが含まれており、異なるオブジェクトからの断片が混在しているため、視覚的な手がかりに基づいて壊れたアーティファクトを分類することは、プロフェッショナルにとっても難しい作業である。
分類は多くの機械学習モデルの共通機能であるため、現代のアーキテクチャのパワーは効率的かつ正確な断片分類に利用することができる。
本研究では,画像断片の芸術的スタイルを予測するための一般化されたディープラーニングフレームワークを提案する。
関連論文リスト
- Visual Motif Identification: Elaboration of a Curated Comparative Dataset and Classification Methods [4.431754853927668]
映画では、視覚的なモチーフは、芸術的または美的な意味を持つ反復的な図形的構成である。
私たちのゴールは、これらのモチーフを認識して分類することであり、その目的にカスタムデータセットを使用する新しい機械学習モデルを提案することです。
CLIPモデルから抽出した機能を、浅いネットワークと適切な損失を用いて、20の異なるモチーフに分類し、驚くほど良い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-21T10:50:00Z) - Measuring Style Similarity in Diffusion Models [118.22433042873136]
画像からスタイル記述子を理解し抽出するためのフレームワークを提案する。
我々のフレームワークは、スタイルが画像の主観的特性であるという洞察を用いてキュレートされた新しいデータセットで構成されている。
また、テキスト・ツー・イメージ・モデルのトレーニングデータセットで使用される画像に対して、生成した画像のスタイルに使用できるスタイル属性記述子を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T17:58:30Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
我々は10,168個の画像からなる新しいデータセットを導入し,それぞれに知覚的アーティファクトラベルを付加した。
提案したデータセットに基づいてトレーニングされたセグメンテーションモデルは、さまざまなタスクにまたがるアーティファクトを効果的にローカライズする。
生成した画像の知覚的アーティファクトをシームレスに修正する,革新的なズームイン・インペインティングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-09T10:22:08Z) - ARTxAI: Explainable Artificial Intelligence Curates Deep Representation
Learning for Artistic Images using Fuzzy Techniques [11.286457041998569]
芸術的画像分類における異なる課題から得られる特徴が、類似した性質の他の課題を解決するのにどのように適しているかを示す。
本稿では、画像の既知の視覚特性をディープラーニングモデルで用いる特徴にマッピングする、説明可能な人工知能手法を提案する。
論文 参考訳(メタデータ) (2023-08-29T13:15:13Z) - Structure-Guided Image Completion with Image-level and Object-level Semantic Discriminators [97.12135238534628]
複雑な意味論やオブジェクトの生成を改善するために,セマンティック・ディミネータとオブジェクトレベル・ディミネータからなる学習パラダイムを提案する。
特に、セマンティック・ディミネーターは、事前学習された視覚的特徴を利用して、生成された視覚概念の現実性を改善する。
提案手法は, 生成品質を著しく向上させ, 各種タスクの最先端化を実現する。
論文 参考訳(メタデータ) (2022-12-13T01:36:56Z) - ArcAid: Analysis of Archaeological Artifacts using Drawings [23.906975910478142]
考古学はコンピュータビジョンの興味深い分野である。
ラベル付きデータに不足するだけでなく、高度に混ざったデータに悩まされる。
本稿では,考古学的遺物の画像の分類と検索のための,新しい半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:57:01Z) - Leveraging Computer Vision Application in Visual Arts: A Case Study on
the Use of Residual Neural Network to Classify and Analyze Baroque Paintings [0.0]
本稿ではヨハン・クペツキーの「画家シャルル・ブルニの肖像」の分類に焦点をあてる。
残余ネットワークトレーニングで抽出した特徴は,オンラインアートコレクションの検索システム内での画像検索に有用であることを示す。
論文 参考訳(メタデータ) (2022-10-27T10:15:36Z) - Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss [51.309905690367835]
本稿では,グローバルな損失と局所的な損失を組み合わせ,構造拡張を伴う任意のスタイル転送手法を提案する。
実験結果から,視覚効果の優れた高画質画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-23T07:02:57Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Object Retrieval and Localization in Large Art Collections using Deep
Multi-Style Feature Fusion and Iterative Voting [10.807131260367298]
本稿では,特定のモチーフやオブジェクトを含む画像領域を検索するアルゴリズムを提案する。
GPUによる近似近傍探索による領域ベースの投票では、広範囲なデータセット内の小さなモチーフを数秒で見つけ、ローカライズすることが可能です。
論文 参考訳(メタデータ) (2021-07-14T18:40:49Z) - Visiting the Invisible: Layer-by-Layer Completed Scene Decomposition [57.088328223220934]
既存のシーン理解システムは、主にシーンの可視部分を認識し、現実世界の物理的物体の無傷な外観を無視します。
本研究では,ある場面における物体と背景の可視部分と可視部分の両方に取り組む高レベルのシーン理解システムを提案する。
論文 参考訳(メタデータ) (2021-04-12T11:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。