Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction
- URL: http://arxiv.org/abs/2501.00880v2
- Date: Sat, 15 Mar 2025 12:31:42 GMT
- Title: Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction
- Authors: Teng Hu, Jiangning Zhang, Ran Yi, Jieyu Weng, Yabiao Wang, Xianfang Zeng, Zhucun Xue, Lizhuang Ma,
- Abstract summary: IAR is an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models.<n>Our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID.
- Score: 52.09472099976885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation. The code is available at: https://github.com/sjtuplayer/IAR.
Related papers
- Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation [27.583326184212194]
We propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM)
We equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns.
In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users.
The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations.
arXiv Detail & Related papers (2025-04-13T09:12:35Z) - LLM-Guided Evolution: An Autonomous Model Optimization for Object Detection [0.0]
In machine learning, Neural Architecture Search (NAS) requires domain knowledge of model design and a large amount of trial-and-error to achieve promising performance.
The Large Language Model (LLM)-Guided Evolution (GE) framework transformed this approach by incorporating LLMs to directly modify model source code for image classification algorithms on CIFAR data.
We show that LLM-GE produced variants with significant performance improvements, such as an increase in Mean Average Precision from 92.5% to 94.5%.
arXiv Detail & Related papers (2025-04-03T05:06:06Z) - Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Towards Generative Class Prompt Learning for Fine-grained Visual Recognition [5.633314115420456]
Generative Class Prompt Learning and Contrastive Multi-class Prompt Learning are presented.
Generative Class Prompt Learning improves visio-linguistic synergy in class embeddings by conditioning on few-shot exemplars with learnable class prompts.
CoMPLe builds on this foundation by introducing a contrastive learning component that encourages inter-class separation.
arXiv Detail & Related papers (2024-09-03T12:34:21Z) - LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings [7.302176015732192]
We introduce a novel framework named Token Embedding-Aligned Graph Language Model (TEA-GLM)
We pretrain a GNN, aligning its representations with token embeddings of an LLM.
We then train a linear projector that transforms the GNN's representations into a fixed number of graph token embeddings.
arXiv Detail & Related papers (2024-08-25T04:32:45Z) - CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
We propose Continual Generative training for Incremental prompt-Learning.
We exploit Variational Autoencoders to learn class-conditioned distributions.
We show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities.
arXiv Detail & Related papers (2024-07-22T16:51:28Z) - SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)<n>We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
We show that large language models can achieve good image classification performance when adapted this way.
Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model.
arXiv Detail & Related papers (2023-12-04T05:13:59Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Consensus Clustering With Unsupervised Representation Learning [4.164845768197489]
We study the clustering ability of Bootstrap Your Own Latent (BYOL) and observe that features learnt using BYOL may not be optimal for clustering.
We propose a novel consensus clustering based loss function, and train BYOL with the proposed loss in an end-to-end way that improves the clustering ability and outperforms similar clustering based methods.
arXiv Detail & Related papers (2020-10-03T01:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.