Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
- URL: http://arxiv.org/abs/2504.10541v1
- Date: Sun, 13 Apr 2025 09:12:35 GMT
- Title: Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
- Authors: Xu Guo, Tong Zhang, Yuanzhi Wang, Chenxu Wang, Fuyun Wang, Xudong Wang, Xiaoya Zhang, Xin Liu, Zhen Cui,
- Abstract summary: We propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM)<n>We equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns.<n>In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users.<n>The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations.
- Score: 27.583326184212194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning presence of Large Language Models (LLM) is propelling the development of personalized recommender systems. Most existing LLM-based methods fail to sufficiently explore the multi-view graph structure correlations inherent in recommendation scenarios. To this end, we propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM), designed to equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns. In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users and an item hypergraph to capture correlations within multimodal similarities among items. The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations. In the LLM fine-tuning phase, we inject the learned graph-structured embeddings directly into the LLM's architecture and integrate sequential features capturing each user's chronological behavior. This process enables hypergraphs to leverage graph-structured information as global context, enhancing the LLM's ability to perceive complex relational patterns and integrate multimodal information, while also modeling local temporal dynamics. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art baselines, confirming the advantages of fusing hypergraph-based context with sequential user behavior in LLMs for recommendation.
Related papers
- Distilling Transitional Pattern to Large Language Models for Multimodal Session-based Recommendation [67.84581846180458]
Session-based recommendation (SBR) predicts the next item based on anonymous sessions.<n>Recent Multimodal SBR methods utilize simplistic pre-trained models for modality learning but have limitations in semantic richness.<n>We propose a multimodal LLM-enhanced framework TPAD, which extends a distillation paradigm to decouple and align transitional patterns for promoting MSBR.
arXiv Detail & Related papers (2025-04-13T07:49:08Z) - Training Large Recommendation Models via Graph-Language Token Alignment [53.3142545812349]
We propose a novel framework to train Large Recommendation models via Graph-Language Token Alignment.
By aligning item and user nodes from the interaction graph with pretrained LLM tokens, GLTA effectively leverages the reasoning abilities of LLMs.
Furthermore, we introduce Graph-Language Logits Matching (GLLM) to optimize token alignment for end-to-end item prediction.
arXiv Detail & Related papers (2025-02-26T02:19:10Z) - Improving Autoregressive Visual Generation with Cluster-Oriented Token Prediction [52.09472099976885]
IAR is an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models.<n>Our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID.
arXiv Detail & Related papers (2025-01-01T15:58:51Z) - Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
Graph representation learning is crucial for real-world applications but often encounters pervasive noise.
We introduce LangGSL, a framework that integrates the complementary strengths of pre-trained language models and graph structure learning models.
arXiv Detail & Related papers (2024-10-15T22:43:32Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - DynLLM: When Large Language Models Meet Dynamic Graph Recommendation [43.05028974086236]
We propose a novel framework, called DynLLM, to deal with the dynamic graph recommendation task with Large Language Models.
Specifically, DynLLM harnesses the power of LLMs to generate multi-faceted user profiles based on the rich textual features of historical purchase records.
Experiments on two real e-commerce datasets have validated the superior improvements of DynLLM over a wide range of state-of-the-art baseline methods.
arXiv Detail & Related papers (2024-05-13T09:36:17Z) - Integrating Large Language Models with Graphical Session-Based
Recommendation [8.086277931395212]
We introduce large language models with graphical Session-Based recommendation, named LLMGR.
This framework bridges the gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks.
This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing.
arXiv Detail & Related papers (2024-02-26T12:55:51Z) - Large Language Model with Graph Convolution for Recommendation [21.145230388035277]
Text information can sometimes be of low quality, hindering its effectiveness for real-world applications.
With knowledge and reasoning capabilities capsuled in Large Language Models, utilizing LLMs emerges as a promising way for description improvement.
We propose a Graph-aware Convolutional LLM method to elicit LLMs to capture high-order relations in the user-item graph.
arXiv Detail & Related papers (2024-02-14T00:04:33Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.