論文の概要: HPC Application Parameter Autotuning on Edge Devices: A Bandit Learning Approach
- arxiv url: http://arxiv.org/abs/2501.01057v1
- Date: Thu, 02 Jan 2025 04:59:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:11:47.453421
- Title: HPC Application Parameter Autotuning on Edge Devices: A Bandit Learning Approach
- Title(参考訳): エッジデバイス上でのHPCアプリケーションパラメータ自動調整:バンドラーニングアプローチ
- Authors: Abrar Hossain, Abdel-Hameed A. Badawy, Mohammad A. Islam, Tapasya Patki, Kishwar Ahmed,
- Abstract要約: エッジデバイスにおけるパラメータ検索空間の問題に対処するために設計された新しい戦略であるLASPを紹介する。
当社の戦略は、オンライン探索とエクスプロイトに焦点を当てたマルチアーム・バンディット(MAB)技術を用いている。
私たちはLulesh、Kripke、Clomp、Hypreの4つのHPCアプリケーションでLASPをテストしました。
- 参考スコア(独自算出の注目度): 0.4543820534430522
- License:
- Abstract: The growing necessity for enhanced processing capabilities in edge devices with limited resources has led us to develop effective methods for improving high-performance computing (HPC) applications. In this paper, we introduce LASP (Lightweight Autotuning of Scientific Application Parameters), a novel strategy designed to address the parameter search space challenge in edge devices. Our strategy employs a multi-armed bandit (MAB) technique focused on online exploration and exploitation. Notably, LASP takes a dynamic approach, adapting seamlessly to changing environments. We tested LASP with four HPC applications: Lulesh, Kripke, Clomp, and Hypre. Its lightweight nature makes it particularly well-suited for resource-constrained edge devices. By employing the MAB framework to efficiently navigate the search space, we achieved significant performance improvements while adhering to the stringent computational limits of edge devices. Our experimental results demonstrate the effectiveness of LASP in optimizing parameter search on edge devices.
- Abstract(参考訳): 資源が限られているエッジデバイスにおいて,処理能力の向上の必要性が高まっているため,高性能コンピューティング(HPC)アプリケーションの改善に有効な方法が開発されている。
本稿では,エッジデバイスにおけるパラメータ検索空間問題に対処するための新しい戦略であるLASP(Lightweight Autotuning of Scientific Application Parameters)を紹介する。
当社の戦略は、オンライン探索とエクスプロイトに焦点を当てたマルチアーム・バンディット(MAB)技術を用いている。
特に、LASPは動的アプローチを採用し、環境の変化にシームレスに適応します。
私たちはLulesh、Kripke、Clomp、Hypreの4つのHPCアプリケーションでLASPをテストしました。
その軽量な性質は、リソース制約のあるエッジデバイスに特に適している。
探索空間を効率的にナビゲートするためにMABフレームワークを用いることで,エッジデバイスの厳密な計算限界に固執しながら,大幅な性能向上を実現した。
実験により,エッジデバイス上でのパラメータ探索の最適化におけるLASPの有効性が示された。
関連論文リスト
- EdgeRL: Reinforcement Learning-driven Deep Learning Model Inference Optimization at Edge [2.8946323553477704]
本稿では,Advantage Actor-Critic (A2C) Reinforcement Learning (RL)アプローチを用いて,バランスを打とうとするEdgeRLフレームワークを提案する。
我々はEdgeRLフレームワークの利点を,端末の省エネ,推論精度の向上,エンドツーエンドの推論遅延低減の観点から評価した。
論文 参考訳(メタデータ) (2024-10-16T04:31:39Z) - AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation [37.456499537121886]
大規模言語モデルの最近の進歩はML/AI開発に変化をもたらした。
大規模言語モデルの最近の進歩は、検索・拡張生成(RAG)システムにおけるAutoMLの原則を変革している。
論文 参考訳(メタデータ) (2024-06-27T15:18:21Z) - Can LLMs Configure Software Tools [0.76146285961466]
ソフトウェア工学では、複雑なシステム内での最適なパフォーマンスを確保するためには、ソフトウェアツールの精巧な構成が不可欠である。
本研究では,Large-Language Models (LLMs) を利用したソフトウェア構成プロセスの合理化について検討する。
本研究は,Chat-GPTなどのLCMを用いて,開始条件を特定し,検索空間を狭め,構成効率を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T05:03:02Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning [49.92394599459274]
我々は,Deep Learning(DL)パイプラインに適したHPOアルゴリズムであるPresideBandを提案する。
各種のDLベンチマークでその堅牢性を示し、情報的専門家のインプットと、専門家の信条の低さに対してその利得を示す。
論文 参考訳(メタデータ) (2023-06-21T16:26:14Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Tuning Particle Accelerators with Safety Constraints using Bayesian
Optimization [73.94660141019764]
粒子加速器の機械パラメータのチューニングは反復的で時間を要する作業である。
我々は、安全なベイズ最適化のステップサイズ制限版を提案し、評価する。
論文 参考訳(メタデータ) (2022-03-26T02:21:03Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
フォグ/エッジコンピューティング環境において, DRL(Deep Reinforcement Learning)に基づく配置技術が提案されている。
IMPortance weighted Actor-Learner Architectures (IMPALA) に基づくアクタ批判に基づく分散アプリケーション配置手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T11:25:03Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - AVAC: A Machine Learning based Adaptive RRAM Variability-Aware
Controller for Edge Devices [3.7346292069282643]
本稿ではAVAC(Adaptive RRAM Variability-Aware Controller)を提案する。
AVACにより、Edgeデバイスは異なるアプリケーションとそのステージに適応し、パフォーマンスを改善し、エネルギー消費を減らすことができる。
論文 参考訳(メタデータ) (2020-05-06T19:06:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。