Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
- URL: http://arxiv.org/abs/2501.01087v3
- Date: Wed, 08 Jan 2025 11:40:29 GMT
- Title: Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
- Authors: Syed Tahir Hussain Rizvi, Neel Kanwal, Muddasar Naeem, Alfredo Cuzzocrea, Antonio Coronato,
- Abstract summary: Time Series Forecasting (TSF) is an important application across many fields.
Recent research suggests simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks.
We propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy.
- Score: 7.887606414896063
- License:
- Abstract: Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy. It also provides better prediction accuracy by using a smaller amount of historical data compared to other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictor (Autoformer) shows that the GLinear, despite being parametrically efficient, significantly outperforms the existing architectures in most cases of multivariate TSF. We hope that the proposed GLinear opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis.
Related papers
- AverageLinear: Enhance Long-Term Time series forcasting with simple averaging [6.125620036017928]
Long-term time series analysis aims to forecast long-term trends by examining changes over past and future periods.
Models based on the Transformer architecture, through the application of attention mechanisms, have demonstrated notable performance advantages.
Our research reveals that the attention mechanism is not the core component responsible for performance enhancement.
arXiv Detail & Related papers (2024-12-30T05:56:25Z) - LSEAttention is All You Need for Time Series Forecasting [0.0]
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision.
Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain.
We introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting.
arXiv Detail & Related papers (2024-10-31T09:09:39Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Are Self-Attentions Effective for Time Series Forecasting? [4.990206466948269]
Time series forecasting is crucial for applications across multiple domains and various scenarios.
Recent findings have indicated that simpler linear models might outperform complex Transformer-based approaches.
We introduce a new architecture, Cross-Attention-only Time Series transformer (CATS)
Our model achieves superior performance with the lowest mean squared error and uses fewer parameters compared to existing models.
arXiv Detail & Related papers (2024-05-27T06:49:39Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
We introduce the Spatio-Temporal- Linear (STL) framework.
STL seamlessly integrates time-embedded and spatially-informed bypasses to augment the Linear-based architecture.
Empirical evidence highlights STL's prowess, outpacing both Linear and Transformer benchmarks across varied observation and prediction durations and datasets.
arXiv Detail & Related papers (2023-12-22T17:46:34Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Are Transformers Effective for Time Series Forecasting? [13.268196448051308]
Recently, there has been a surge of Transformer-based solutions for the time series forecasting (TSF) task.
This study investigates whether Transformer-based techniques are the right solutions for long-term time series forecasting.
We find that the relatively higher long-term forecasting accuracy of Transformer-based solutions has little to do with the temporal relation extraction capabilities of the Transformer architecture.
arXiv Detail & Related papers (2022-05-26T17:17:08Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.