論文の概要: Symmetries-enhanced Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.01136v1
- Date: Thu, 02 Jan 2025 08:41:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:08.821867
- Title: Symmetries-enhanced Multi-Agent Reinforcement Learning
- Title(参考訳): 対称性強化型マルチエージェント強化学習
- Authors: Nikolaos Bousias, Stefanos Pertigkiozoglou, Kostas Daniilidis, George Pappas,
- Abstract要約: エージェントが複雑な協調行動を学ぶための強力なフレームワークとして、マルチエージェント強化学習が登場した。
近年の進歩は、システム固有の対称性を政策に組み込むことによって、これらの問題を緩和しようとしている。
本稿では,マルチエージェントシステムに外部対称性を組み込むための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 25.383183391244373
- License:
- Abstract: Multi-agent reinforcement learning has emerged as a powerful framework for enabling agents to learn complex, coordinated behaviors but faces persistent challenges regarding its generalization, scalability and sample efficiency. Recent advancements have sought to alleviate those issues by embedding intrinsic symmetries of the systems in the policy. Yet, most dynamical systems exhibit little to no symmetries to exploit. This paper presents a novel framework for embedding extrinsic symmetries in multi-agent system dynamics that enables the use of symmetry-enhanced methods to address systems with insufficient intrinsic symmetries, expanding the scope of equivariant learning to a wide variety of MARL problems. Central to our framework is the Group Equivariant Graphormer, a group-modular architecture specifically designed for distributed swarming tasks. Extensive experiments on a swarm of symmetry-breaking quadrotors validate the effectiveness of our approach, showcasing its potential for improved generalization and zero-shot scalability. Our method achieves significant reductions in collision rates and enhances task success rates across a diverse range of scenarios and varying swarm sizes.
- Abstract(参考訳): 多エージェント強化学習は、エージェントが複雑で協調的な振る舞いを学べる強力なフレームワークとして登場したが、その一般化、スケーラビリティ、サンプル効率に関する永続的な課題に直面している。
近年の進歩は、システム固有の対称性を政策に組み込むことによって、これらの問題を緩和しようとしている。
しかし、ほとんどの力学系は、利用すべき対称性はほとんど、あるいは全く示さない。
本稿では,マルチエージェントシステムに外在的対称性を組み込む新しい枠組みを提案する。これは,非内在的対称性が不十分なシステムに対称性を付与する手法を用いることを可能にし,同変学習の範囲を多種MARL問題に拡張するものである。
私たちのフレームワークの中心は、分散スワーミングタスク用に特別に設計されたグループモジュールアーキテクチャであるGroup Equivariant Graphormerです。
対称性を破る四辺形群に対する大規模な実験は、我々のアプローチの有効性を検証し、一般化とゼロショットのスケーラビリティを向上させる可能性を示している。
本手法は, 衝突速度の大幅な低減を実現し, 各種シナリオおよび各種Swarmサイズにおけるタスク成功率を向上させる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping
Points [0.0]
本稿では,複雑なシステムの創発的挙動におけるヒント点を検出するための機械学習支援フレームワークを提案する。
我々は、異なるスケールで創発的ダイナミクスのための縮小次モデルを構築した。
異なるモデルの使用と、それらを学ぶための努力とは対照的です。
論文 参考訳(メタデータ) (2023-09-25T17:58:23Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - ${\rm E}(3)$-Equivariant Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning [7.712824077083934]
我々は,ある協調型マルチエージェント強化学習問題に固有のユークリッド対称性の活用に焦点をあてる。
我々は,マルチエージェントアクター批判手法の帰納バイアスとして,対称的制約を組み込んだニューラルネットワークアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-08-23T00:18:17Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
機械学習モデルの敵攻撃に対する脆弱性は、近年、かなりの注目を集めている。
この研究は、個々のエージェントが様々な強度摂動空間に従属するグラフ上の敵の訓練を研究する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Multi-Symmetry Ensembles: Improving Diversity and Generalization via
Opposing Symmetries [14.219011458423363]
我々は,対称性軸に沿った仮説の多重性を捉えることで,多様なアンサンブルを構築するためのフレームワークであるマルチサイメトリ・アンサンブル(MSE)を提案する。
MSEは、ImageNetのような大規模で多様なデータセットでしばしば必要とされる矛盾する仮説の多重性を効果的にキャプチャする。
その固有の多様性の結果、MSEは分類性能、不確実な定量化、一連の伝達タスクの一般化を改善している。
論文 参考訳(メタデータ) (2023-03-04T19:11:54Z) - Multi-Agent MDP Homomorphic Networks [100.74260120972863]
協調型マルチエージェントシステムでは、エージェントの異なる構成とそれらの局所的な観察の間に複雑な対称性が生じる。
単エージェント強化学習における既存の対称性の研究は、完全に集中した環境にのみ一般化できる。
本稿では,ローカル情報のみを用いた分散実行が可能なネットワークのクラスであるマルチエージェントMDPホモモルフィックネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-09T07:46:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。