論文の概要: Attending To Syntactic Information In Biomedical Event Extraction Via Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2501.01158v2
- Date: Tue, 21 Jan 2025 09:12:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:01.347507
- Title: Attending To Syntactic Information In Biomedical Event Extraction Via Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いた生体イベント抽出における統語情報の試み
- Authors: Farshad Noravesh, Reza Haffari, Ong Huey Fang, Layki Soon, Sailaja Rajalana, Arghya Pal,
- Abstract要約: 本稿では,依存グラフの完全隣接行列を用いて個々のトークンを埋め込む。
また, 依存グラフが全体の性能に与える影響を示すために, アブレーション実験を行った。
提案したモデルは,BEEの最先端モデルを,異なるデータセットに対してわずかに上回っている。
- 参考スコア(独自算出の注目度): 5.758308856138859
- License:
- Abstract: Many models are proposed in the literature on biomedical event extraction(BEE). Some of them use the shortest dependency path(SDP) information to represent the argument classification task. There is an issue with this representation since even missing one word from the dependency parsing graph may totally change the final prediction. To this end, the full adjacency matrix of the dependency graph is used to embed individual tokens using a graph convolutional network(GCN). An ablation study is also done to show the effect of the dependency graph on the overall performance. The results show a significant improvement when dependency graph information is used. The proposed model slightly outperforms state-of-the-art models on BEE over different datasets.
- Abstract(参考訳): バイオメディカルイベント抽出(BEE)に関する文献では,多くのモデルが提案されている。
それらのいくつかは、引数分類タスクを表現するために、最も短い依存性パス(SDP)情報を使用する。
依存性解析グラフから1つの単語が失われても、最終的な予測が完全に変わる可能性があるため、この表現には問題がある。
この目的のために、依存グラフの完全な隣接行列を用いて、グラフ畳み込みネットワーク(GCN)を用いて個々のトークンを埋め込む。
また, 依存グラフが全体の性能に与える影響を示すために, アブレーション実験を行った。
その結果,依存性グラフ情報を用いた場合,大幅な改善が得られた。
提案したモデルは,BEEの最先端モデルを,異なるデータセットに対してわずかに上回っている。
関連論文リスト
- Graph Size-imbalanced Learning with Energy-guided Structural Smoothing [13.636616140250908]
実世界のグラフは通常、マルチグラフ分類における大きさ不均衡の問題に悩まされる。
近年の研究では、市販のグラフニューラルネットワーク(GNN)が、長期設定下でのモデル性能を損なうことが報告されている。
我々は,頭部と尾部のグラフの特徴を円滑に表現する,textbfSIMBAという新しいエネルギーベースサイズ不均衡学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-23T14:06:49Z) - A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
我々は,分散シフト下での深層グラフ学習について,最新かつ先見的なレビューを行う。
具体的には,グラフ OOD 一般化,トレーニング時グラフ OOD 適応,テスト時グラフ OOD 適応の3つのシナリオについて述べる。
文献の理解を深めるために,提案した分類に基づく既存モデルを体系的に分類した。
論文 参考訳(メタデータ) (2024-10-25T02:39:56Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning [34.23920789327245]
本稿では,グラフのキー部分を保存するために,コントラスト的な拡張過程を導出するENGAGEを提案する。
また、構造情報と特徴情報を摂動するグラフ上に2つのデータ拡張スキームを設計する。
論文 参考訳(メタデータ) (2023-07-03T14:33:14Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Model-Agnostic Augmentation for Accurate Graph Classification [19.824105919844495]
グラフ拡張は、グラフベースのタスクのパフォーマンスを改善するための重要な戦略である。
本研究では,有効拡張のための5つの望ましい特性を紹介する。
ソーシャルネットワークと分子グラフに関する実験により、NodeSamとSubMixはグラフ分類における既存のアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-02-21T10:37:53Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。