論文の概要: EHCTNet: Enhanced Hybrid of CNN and Transformer Network for Remote Sensing Image Change Detection
- arxiv url: http://arxiv.org/abs/2501.01238v1
- Date: Thu, 02 Jan 2025 12:55:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:39.950052
- Title: EHCTNet: Enhanced Hybrid of CNN and Transformer Network for Remote Sensing Image Change Detection
- Title(参考訳): EHCTNet:リモートセンシング画像変化検出のためのCNNとトランスフォーマーネットワークの強化ハイブリッド
- Authors: Junjie Yang, Haibo Wan, Zhihai Shang,
- Abstract要約: 既存のフレームワークは、偽陽性のコストを削減するために精度基準を改善するのに苦労しているが、それでも関心の変化に焦点を合わせるのに制限がある。
本研究は,特徴学習能力の向上と特徴情報の周波数成分の統合により,これらの課題に対処する。
本稿では,CNN と Transformer Network (EHCTNet) のハイブリッドを改良し,関心の変化情報を効果的にマイニングする手法を提案する。
- 参考スコア(独自算出の注目度): 14.31739715354338
- License:
- Abstract: Remote sensing (RS) change detection incurs a high cost because of false negatives, which are more costly than false positives. Existing frameworks, struggling to improve the Precision metric to reduce the cost of false positive, still have limitations in focusing on the change of interest, which leads to missed detections and discontinuity issues. This work tackles these issues by enhancing feature learning capabilities and integrating the frequency components of feature information, with a strategy to incrementally boost the Recall value. We propose an enhanced hybrid of CNN and Transformer network (EHCTNet) for effectively mining the change information of interest. Firstly, a dual branch feature extraction module is used to extract the multi scale features of RS images. Secondly, the frequency component of these features is exploited by a refined module I. Thirdly, an enhanced token mining module based on the Kolmogorov Arnold Network is utilized to derive semantic information. Finally, the semantic change information's frequency component, beneficial for final detection, is mined from the refined module II. Extensive experiments validate the effectiveness of EHCTNet in comprehending complex changes of interest. The visualization outcomes show that EHCTNet detects more intact and continuous changed areas and perceives more accurate neighboring distinction than state of the art models.
- Abstract(参考訳): リモートセンシング(RS)変化検出は、偽陽性よりもコストが高い偽陰性のため、高いコストを発生させる。
既存のフレームワークは、偽陽性のコストを削減するために精密度基準を改善するのに苦労しているが、それでも関心の変化に焦点を絞ることに制限があり、検出の欠落と不連続の問題につながっている。
この作業は、特徴学習機能を強化し、特徴情報の周波数成分を統合することで、リコール値を漸進的に向上させる戦略によって、これらの課題に対処する。
本稿では,CNN と Transformer Network (EHCTNet) のハイブリッドを改良し,関心の変化情報を効果的にマイニングする手法を提案する。
まず、二重分岐特徴抽出モジュールを用いて、RS画像のマルチスケール特徴を抽出する。
第2に、これらの特徴の周波数成分は洗練されたモジュールIによって利用され、第3に、コルモゴロフ・アーノルドネットワークに基づく拡張されたトークンマイニングモジュールを用いて意味情報を導出する。
最後に、精細化モジュールIIから、最終検出に有用な意味変化情報の周波数成分をマイニングする。
興味の複雑な変化を理解する上でのEHCTNetの有効性を広範囲にわたる実験により検証した。
可視化の結果は、EHCTNetは、より無傷で連続的な変化領域を検出し、最先端のモデルよりも正確な近隣の区別を知覚していることを示している。
関連論文リスト
- Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNetは、空間的特徴と時間的特徴の両方を利用する早期融合バックボーンを導入した。
実験では、従来のRS画像CD法よりもRCTNetの方が明らかに優れていることを示した。
論文 参考訳(メタデータ) (2024-07-03T14:58:40Z) - DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning [5.932234366793244]
変化センシング(RSCD)は、多時間リモートセンシング画像を分析して、ある領域における関心の変化を特定することを目的としている。
既存のRSCD法は、関心の変化を高めるために空間領域におけるコンテキストモデリングに費やされている。
二重領域学習(周波数領域と空間領域)に基づくRSCDネットワークDNetを提案する。
論文 参考訳(メタデータ) (2024-06-19T14:54:09Z) - NeRF-DetS: Enhanced Adaptive Spatial-wise Sampling and View-wise Fusion Strategies for NeRF-based Indoor Multi-view 3D Object Detection [17.631688089207724]
屋内シーンでは、物体の位置とスケールの多様さが視覚的な3D知覚タスクを大きな課題にしている。
従来の研究では、暗黙の表現は視覚的な3D知覚タスクに役立てる能力を持っていることが示されている。
これらの問題に対処するために, 単純で効果的なNeRF-DetSを提案する。
論文 参考訳(メタデータ) (2024-04-22T06:59:03Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Explicit Change Relation Learning for Change Detection in VHR Remote
Sensing Images [12.228675703851733]
変更関係の特徴を明示的にマイニングするためのネットワークアーキテクチャNAMEを提案する。
変更検出の変更特徴は、事前変更画像特徴、後変更画像特徴、変更関係特徴に分けられる。
我々のネットワークは、F1、IoU、OAの点で、変更検出のための既存の先進的なネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-11-14T08:47:38Z) - SwinV2DNet: Pyramid and Self-Supervision Compounded Feature Learning for
Remote Sensing Images Change Detection [12.727650696327878]
本稿では,変換器とCNNの利点を継承するために,エンドツーエンドの複合ネットワークSwinV2DNetを提案する。
これは、密に接続されたSwin V2バックボーンを通じて、変更関係の機能をキャプチャする。
CNNブランチを通じて、低レベルの事前変更と後変更の機能を提供する。
論文 参考訳(メタデータ) (2023-08-22T03:31:52Z) - Lightweight Structure-aware Transformer Network for VHR Remote Sensing
Image Change Detection [15.391216316828354]
RS画像CDのための軽量構造対応トランス (LSAT) ネットワークを提案する。
まず、線形複雑度を有するクロス次元インタラクティブ自己注意(CISA)モジュールは、視覚変換器におけるバニラ自己注意を置き換えるように設計されている。
第二に、SAEM(Structure-Aware Enhancement Module)は、差分特徴とエッジ詳細情報を強化するために設計されている。
論文 参考訳(メタデータ) (2023-06-03T03:21:18Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
視覚変換器(ViT)は、物体検出アプローチのランドスケープを変化させている。
本稿では,デコーダフリー完全トランス(DFFT)オブジェクト検出器を提案する。
DFFT_SMALLは、トレーニングおよび推論段階で高い効率を達成する。
論文 参考訳(メタデータ) (2022-06-14T13:22:19Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。