論文の概要: NeutraSum: A Language Model can help a Balanced Media Diet by Neutralizing News Summaries
- arxiv url: http://arxiv.org/abs/2501.01284v1
- Date: Thu, 02 Jan 2025 14:48:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:44.036955
- Title: NeutraSum: A Language Model can help a Balanced Media Diet by Neutralizing News Summaries
- Title(参考訳): NeutraSum:ニュース要約を中立化することで、バランスのとれたメディアダイエットを支援する言語モデル
- Authors: Xi Luo, Junjie Liu, Sirong Wu, Yuhui Deng,
- Abstract要約: ニュース記事のメディア偏見は、メディアの政治的偏見から生じる。
NeutraSumは、2つの中立性損失を統合し、生成された要約の意味空間を調整する。
メディアバイアスを大幅に減らし、中立的なニュース要約に有望なアプローチを提供する。
- 参考スコア(独自算出の注目度): 6.0635849782457925
- License:
- Abstract: Media bias in news articles arises from the political polarisation of media outlets, which can reinforce societal stereotypes and beliefs. Reporting on the same event often varies significantly between outlets, reflecting their political leanings through polarised language and focus. Although previous studies have attempted to generate bias-free summaries from multiperspective news articles, they have not effectively addressed the challenge of mitigating inherent media bias. To address this gap, we propose \textbf{NeutraSum}, a novel framework that integrates two neutrality losses to adjust the semantic space of generated summaries, thus minimising media bias. These losses, designed to balance the semantic distances across polarised inputs and ensure alignment with expert-written summaries, guide the generation of neutral and factually rich summaries. To evaluate media bias, we employ the political compass test, which maps political leanings based on economic and social dimensions. Experimental results on the Allsides dataset demonstrate that NeutraSum not only improves summarisation performance but also achieves significant reductions in media bias, offering a promising approach for neutral news summarisation.
- Abstract(参考訳): ニュース記事のメディアバイアスは、社会的なステレオタイプや信念を強化することができるメディアの政治的分極から生じる。
同じ出来事に関する報告は、しばしば報道機関間で大きく異なり、その政治的傾向を偏在言語と焦点を通して反映している。
過去の研究では、多面的なニュース記事からバイアスのない要約を創出しようと試みてきたが、本質的なメディアバイアスを軽減するという課題に効果的に対処していない。
このギャップに対処するため,メディアバイアスを最小限に抑えるために,2つの中立性損失を統合した新しいフレームワークである「textbf{NeutraSum}」を提案する。
これらの損失は、分極された入力間で意味的距離のバランスを保ち、専門家が書いた要約との整合性を確保し、中立的で事実的に豊かな要約の生成を導くように設計されている。
メディアバイアスを評価するために,政治コンパステストを用いて,経済的・社会的側面に基づく政治傾向のマッピングを行う。
Allsidesデータセットの実験結果によると、NeutraSumは要約性能を向上するだけでなく、メディアバイアスを大幅に低減し、中立なニュース要約に有望なアプローチを提供する。
関連論文リスト
- P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
既存のアプローチは、要約の50%以上で、ニュース記事の政治的意見やスタンスを変えている。
政治的視点分類器によって制御される拡散モデルに基づく要約手法であるP3SUMを提案する。
3つのニュース要約データセットの実験により、P3SUMは最先端の要約システムより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-16T10:14:28Z) - Mitigating Framing Bias with Polarity Minimization Loss [56.24404488440295]
偏見バイアスは、実際の出来事の知覚を歪ませることによって政治的分極を悪化させる重要な役割を担っている。
そこで本研究では,フレーミングバイアスを低減するために,偏光入力項目間の極性差を最小限に抑える新たな損失関数を提案する。
論文 参考訳(メタデータ) (2023-11-03T09:50:23Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
手動で3つのアノテートデータセットを作成し、さまざまな視覚化戦略をテストする。
その結果, 対照群と比較して, 治療群の偏見に気付く効果は認められなかった。
多段階モデルを用いて、ジャーナリストの偏見は、記事の政治的極性や公平性に大きく関係していることがわかった。
論文 参考訳(メタデータ) (2021-05-20T10:16:54Z) - Mitigating Media Bias through Neutral Article Generation [39.29914845102368]
既存の緩和作業は、複数のニュースアウトレットからの記事を表示し、多様なニュースカバレッジを提供しますが、表示された各記事に固有のバイアスを中和しません。
我々は,複数の偏りのある記事から単一の中性化記事を生成する新しいタスクを提案し,バランスのとれた情報や偏りのない情報へのアクセスをより効率的にする。
論文 参考訳(メタデータ) (2021-04-01T08:37:26Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
我々は,adfontesmedia.comから派生したラベル付き6964ニュース記事の新しいコーパスを活用し,バイアス評価のためのニューラルモデルを開発した。
論文 参考訳(メタデータ) (2020-10-20T22:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。