論文の概要: LEO-Split: A Semi-Supervised Split Learning Framework over LEO Satellite Networks
- arxiv url: http://arxiv.org/abs/2501.01293v1
- Date: Thu, 02 Jan 2025 15:19:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:20.489579
- Title: LEO-Split: A Semi-Supervised Split Learning Framework over LEO Satellite Networks
- Title(参考訳): LEO-Split: LEO衛星ネットワーク上での半教師付きスプリット学習フレームワーク
- Authors: Zheng Lin, Yuxin Zhang, Zhe Chen, Zihan Fang, Cong Wu, Xianhao Chen, Yue Gao, Jun Luo,
- Abstract要約: 衛星ネットワークに適した半教師付き(SS)SL設計であるLEO-Splitを提案する。
我々のフレームワークは最先端のベンチマークよりも優れた性能を実現している。
- 参考スコア(独自算出の注目度): 19.596449467255095
- License:
- Abstract: Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.
- Abstract(参考訳): 近年、LEO衛星システムの普及により、深層学習(DL)の進歩に大きく依存する様々な宇宙分析(作物や気候モニタリングなど)が可能になった。
しかし、LEO衛星と地上局(GS)間の断続的な接続は、リソース制約されたLEO衛星上での分散学習をスケールアップしたDLモデルが妨げる一方で、生データのGSへのタイムリーな送信を著しく妨げている。
分割学習(SL)は、モデルを分割し、一次トレーニングの負荷をGSにオフロードすることで、これらの問題に対する潜在的な解決策となるが、労働集約的なラベル付けプロセスは依然として障害であり、断続的な接続性とデータの異種性は他の課題である。
本稿では,衛星ネットワークに適した半教師付き(SS)SL設計であるLEO-Splitを提案する。
SS学習を利用して(ラベル付き)データ不足を処理し,衛星GS非接触時間のトレーニング失敗に対処するための補助モデルを構築した。
さらに,衛星間のデータ不均衡を補正する擬似ラベルアルゴリズムを提案する。
最後に,GSにおけるサーバサイドサブモデルトレーニングの過度な適合を防止するため,適応型アクティベーション補間方式を考案した。
実世界のLEO衛星トレース(例:Starlink)による大規模な実験は、我々のLEO-Splitフレームワークが最先端のベンチマークよりも優れたパフォーマンスを達成することを示した。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation [12.489681058742358]
我々は、低軌道(FELLO)のための協調的連合学習を提案している。
我々は、低遅延地上ゲートウェイサーバ(GS)が初期信号制御のみを行うのに対し、低ペイロードの衛星間伝送でLEOに全処理を割り当てる。
提案したFELLOは、従来の集中型および分散型アーキテクチャよりも高い分類精度と、共同通信と計算のレイテンシを両立させる。
論文 参考訳(メタデータ) (2023-03-25T04:24:16Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
衛星エッジコンピューティング(SEC)は、各衛星がMLモデルをオンボードで訓練し、モデルのみを地上局にアップロードすることを可能にする。
本稿では、既存のFLベースのソリューションの制限(緩やかな収束)を克服する新しいFLフレームワークであるFedLEOを提案する。
以上の結果から,FedLEO は FL の収束を著しく促進するが,実際にモデル精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-27T00:32:01Z) - Decoupled Adversarial Contrastive Learning for Self-supervised
Adversarial Robustness [69.39073806630583]
頑健な表現学習のための対人訓練(AT)と教師なし表現学習のための自己教師型学習(SSL)は2つの活発な研究分野である。
Decoupled Adversarial Contrastive Learning (DeACL) と呼ばれる2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-22T06:30:44Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。