論文の概要: Domain-invariant feature learning in brain MR imaging for content-based image retrieval
- arxiv url: http://arxiv.org/abs/2501.01326v1
- Date: Thu, 02 Jan 2025 16:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:17:03.874214
- Title: Domain-invariant feature learning in brain MR imaging for content-based image retrieval
- Title(参考訳): コンテンツに基づく画像検索のための脳MR画像におけるドメイン不変の特徴学習
- Authors: Shuya Tobari, Shuhei Tomoshige, Hayato Muraki, Kenichi Oishi, Hitoshi Iyatomi,
- Abstract要約: 脳MR画像のコンテントベース画像検索(CBIR)を実現するために,スタイルエンコーダ逆数領域適応(SE-ADA)と呼ばれる新しい低次元表現(LDR)取得手法を提案する。
SE-ADAは、LDRからドメイン固有情報を分離し、対向学習を用いてドメイン差を最小限にすることで、病的特徴を保ちながらドメイン差を低減する。
- 参考スコア(独自算出の注目度): 1.9515126654284938
- License:
- Abstract: When conducting large-scale studies that collect brain MR images from multiple facilities, the impact of differences in imaging equipment and protocols at each site cannot be ignored, and this domain gap has become a significant issue in recent years. In this study, we propose a new low-dimensional representation (LDR) acquisition method called style encoder adversarial domain adaptation (SE-ADA) to realize content-based image retrieval (CBIR) of brain MR images. SE-ADA reduces domain differences while preserving pathological features by separating domain-specific information from LDR and minimizing domain differences using adversarial learning. In evaluation experiments comparing SE-ADA with recent domain harmonization methods on eight public brain MR datasets (ADNI1/2/3, OASIS1/2/3/4, PPMI), SE-ADA effectively removed domain information while preserving key aspects of the original brain structure and demonstrated the highest disease search accuracy.
- Abstract(参考訳): 複数の施設から脳MR画像を収集する大規模研究を行う際には、画像装置やプロトコルの違いの影響は無視できないため、近年ではこの領域のギャップが大きな問題となっている。
本研究では,脳MR画像のコンテントベース画像検索(CBIR)を実現するために,スタイルエンコーダ逆数領域適応(SE-ADA)と呼ばれる新しい低次元表現(LDR)取得手法を提案する。
SE-ADAは、LDRからドメイン固有情報を分離し、対向学習を用いてドメイン差を最小限にすることで、病的特徴を保ちながらドメイン差を低減する。
SE-ADAと最近の8つのパブリック脳MRデータセット(ADNI1/2/3, OASIS1/2/3/4, PPMI)の領域調和法を比較した評価実験において、SE-ADAは元の脳構造の重要な側面を保持しつつドメイン情報を効果的に除去し、最も高い疾患検索精度を示した。
関連論文リスト
- Reducing Domain Gap in Frequency and Spatial domain for Cross-modality
Domain Adaptation on Medical Image Segmentation [5.371816551086118]
教師なしドメイン適応(UDA)は、ソースドメインで訓練されたモデルを学び、ラベルなしのターゲットドメインでうまく機能することを目的としています。
本稿では, 周波数及び空間領域移動Uner Multi-Teacher蒸留フレームワークに基づく, 単純かつ効果的なUDA法を提案する。
提案手法は最先端手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-28T11:35:39Z) - C-MADA: Unsupervised Cross-Modality Adversarial Domain Adaptation
framework for medical Image Segmentation [0.8680676599607122]
医用画像セグメンテーションのための教師なしクロスモダリティ適応(C-MADA)フレームワークを提案する。
C-MADAは画像と特徴レベルの適応を逐次的に実装する。
脳MRIのセグメンテーションのタスクでテストされ、競争力のある結果を得る。
論文 参考訳(メタデータ) (2021-10-29T14:34:33Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
放射線科医の費用負担を軽減するための医用画像のクロスモダリティ合成
本稿では,教師なしまたは教師なし(非ペア画像データ)の設定が可能な医用画像における画像から画像への変換手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T16:22:31Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - Domain Adaptive Relational Reasoning for 3D Multi-Organ Segmentation [17.504340316130023]
本手法は,医用画像の内部構造間の空間的関係が比較的固定されていることに着想を得たものである。
我々はジグソーパズルタスクを解くことで空間的関係を定式化し、シャッフルパッチからCTスキャンを復元し、臓器分割タスクと共同で訓練する。
学習した空間関係が複数の領域に伝達可能であることを保証するため,1) 分割モデルと協調して訓練された超解像ネットワークを用いて,異なる領域からの医用画像の標準化,2) テスト時間ジグソーパズルトレーニングによるテスト画像の空間関係の適応,の2つのスキームを導入する。
論文 参考訳(メタデータ) (2020-05-18T22:44:34Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。