Survey on safe robot control via learning
- URL: http://arxiv.org/abs/2501.01432v1
- Date: Mon, 16 Dec 2024 21:04:09 GMT
- Title: Survey on safe robot control via learning
- Authors: Bassel El Mabsout,
- Abstract summary: This survey explores the landscape of safe robot learning, investigating methods that balance high-performance control with rigorous safety constraints.
By examining classical control techniques, learning-based approaches, and embedded system design, the research seeks to understand how robotic systems can be developed to prevent hazardous states while maintaining optimal performance across complex operational environments.
- Score: 0.0
- License:
- Abstract: Control systems are critical to modern technological infrastructure, spanning industries from aerospace to healthcare. This survey explores the landscape of safe robot learning, investigating methods that balance high-performance control with rigorous safety constraints. By examining classical control techniques, learning-based approaches, and embedded system design, the research seeks to understand how robotic systems can be developed to prevent hazardous states while maintaining optimal performance across complex operational environments.
Related papers
- Don't Let Your Robot be Harmful: Responsible Robotic Manipulation [57.70648477564976]
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks.
We present Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections.
We show that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments.
arXiv Detail & Related papers (2024-11-27T12:27:50Z) - Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning [20.158498233576143]
Trajectory planning under kinodynamic constraints is fundamental for advanced robotics applications.
Recent advances in kinodynamic planning demonstrate that learning-to-plan techniques can generate complex motions under intricate constraints.
This paper addresses this limitation by combining learning-to-plan methods with reinforcement learning, resulting in a novel integration of black-box learning of motion primitives and optimization.
arXiv Detail & Related papers (2024-08-26T07:44:53Z) - ABNet: Attention BarrierNet for Safe and Scalable Robot Learning [58.4951884593569]
Barrier-based method is one of the dominant approaches for safe robot learning.
We propose Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner.
We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving.
arXiv Detail & Related papers (2024-06-18T19:37:44Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
We propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs)
ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses.
EKGs provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols.
arXiv Detail & Related papers (2024-05-28T05:50:25Z) - Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
We show how we can impose complex safety constraints on learning-based robotics systems in a principled manner.
Our approach is based on the concept of the Constraint Manifold, representing the set of safe robot configurations.
We demonstrate the method's effectiveness in a real-world Robot Air Hockey task.
arXiv Detail & Related papers (2024-04-13T20:55:15Z) - A Model Based Framework for Testing Safety and Security in Operational
Technology Environments [0.46040036610482665]
We propose a model-based testing approach which we consider a promising way to analyze the safety and security behavior of a system under test.
The structure of the underlying framework is divided into four parts, according to the critical factors in testing of operational technology environments.
arXiv Detail & Related papers (2023-06-22T05:37:09Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Safe Learning in Robotics: From Learning-Based Control to Safe
Reinforcement Learning [3.9258421820410225]
We review the recent advances made in using machine learning to achieve safe decision making under uncertainties.
Our review includes: learning-based control approaches that safely improve performance by learning the uncertain dynamics.
We highlight some of the open challenges that will drive the field of robot learning in the coming years.
arXiv Detail & Related papers (2021-08-13T14:22:02Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.