Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
- URL: http://arxiv.org/abs/2405.17846v1
- Date: Tue, 28 May 2024 05:50:25 GMT
- Title: Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
- Authors: Yong Qi, Gabriel Kyebambo, Siyuan Xie, Wei Shen, Shenghui Wang, Bitao Xie, Bin He, Zhipeng Wang, Shuo Jiang,
- Abstract summary: We propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs)
ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses.
EKGs provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols.
- Score: 12.787160626087744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - RAMPA: Robotic Augmented Reality for Machine Programming and Automation [4.963604518596734]
This paper introduces Robotic Augmented Reality for Machine Programming (RAMPA)
RAMPA is a system that utilizes the capabilities of state-of-the-art and commercially available AR headsets, e.g., Meta Quest 3.
Our approach enables in-situ data recording, visualization, and fine-tuning of skill demonstrations directly within the user's physical environment.
arXiv Detail & Related papers (2024-10-17T10:21:28Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
This paper addresses the need for safety measures in AI systems that collaborate with human teams.
We propose and evaluate three frameworks to enhance safety protocols in AI agent systems.
We conclude that these frameworks can significantly strengthen the safety and security of AI agent systems.
arXiv Detail & Related papers (2024-09-03T10:14:51Z) - SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced.
Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections.
We propose textitSafeEmbodAI, a safety framework for integrating mobile robots into embodied AI systems.
arXiv Detail & Related papers (2024-09-03T05:56:50Z) - ABNet: Attention BarrierNet for Safe and Scalable Robot Learning [58.4951884593569]
Barrier-based method is one of the dominant approaches for safe robot learning.
We propose Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner.
We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving.
arXiv Detail & Related papers (2024-06-18T19:37:44Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
We highlight the critical issues of robustness and safety associated with integrating large language models (LLMs) and vision-language models (VLMs) into robotics applications.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Plug in the Safety Chip: Enforcing Constraints for LLM-driven Robot
Agents [25.62431723307089]
We propose a queryable safety constraint module based on linear temporal logic (LTL)
Our system strictly adheres to the safety constraints and scales well with complex safety constraints, highlighting its potential for practical utility.
arXiv Detail & Related papers (2023-09-18T16:33:30Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage.
This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks.
Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data.
arXiv Detail & Related papers (2022-09-27T11:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.