論文の概要: Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids
- arxiv url: http://arxiv.org/abs/2501.01576v1
- Date: Thu, 02 Jan 2025 23:47:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:12.199720
- Title: Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids
- Title(参考訳): 化学のための機械学習モデルの構築と説明--ホウ素系ルイス酸の探索と設計例
- Authors: Juliette Fenogli, Laurence Grimaud, Rodolphe Vuilleumier,
- Abstract要約: 我々は、説明可能なAI技術を活用して、ホウ素系ルイス酸の設計を探索する。
化学空間を適切に定義された分子足場に限定することにより,高精度な予測が可能となった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of machine learning (ML) into chemistry offers transformative potential in the design of molecules. However, the focus has often been on creating highly efficient predictive models, sometimes at the expense of interpretability. We leverage explainable AI techniques to explore the design of boron-based Lewis acids, which play a pivotal role in organic reactions. Using Fluoride Ion Affinity as a proxy for Lewis acidity, we developed interpretable ML models based on chemically meaningful descriptors, including ab initio features and substituent-based parameters. By constraining the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions, surpassing conventional black-box deep learning models in low-data regime. Interpretability analyses of the models unraveled the origin of Lewis acidity in these compounds and identified actionable levers to modulate it. This work bridges ML and chemist's way of thinking, demonstrating how explainable models can inspire molecular design and enhance scientific understanding of chemical reactivity.
- Abstract(参考訳): 機械学習(ML)の化学への統合は、分子の設計における変換可能性を提供する。
しかし、しばしば高効率な予測モデルの作成に焦点が当てられ、時には解釈可能性の犠牲になる。
我々は、説明可能なAI技術を利用して、有機反応において重要な役割を果たすホウ素系ルイス酸の設計を探索する。
ルイス酸の代用としてフッ化物イオン親和性を用いて, 化学的に有意な記述子に基づく解釈可能なMLモデルを構築した。
化学空間を適切に定義された分子足場に限定することにより,従来のブラックボックス深層学習モデルを上回る精度の予測を実現した。
これらのモデルの解釈可能性解析は、これらの化合物のルイス酸の起源を解明し、それを調節する実行可能なレバーを同定した。
この研究はMLと化学者の考え方を橋渡しし、説明可能なモデルがいかに分子設計を刺激し、化学反応性の科学的理解を高めるかを実証する。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRESは化学言語表現学習フレームワークである。
ジェネレータと識別器のトレーニングが組み込まれており、より難しい例からモデルを学習することができる。
我々のモデルは、一般的な分子特性予測タスクにおける既存の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2024-07-09T01:14:28Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAPは、化学反応性(IMR)知識に基づくグラフ事前学習トランスフォーマーであり、微調整を誘導する。
MolCAPによって推進され、基礎的なグラフニューラルネットワークでさえ、以前のモデルを上回る驚くべきパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-06-13T13:48:06Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - Geometric Deep Learning on Molecular Representations [0.0]
Geometric Deep Learning (GDL)は、対称性情報を取り込んで処理するニューラルネットワークアーキテクチャに基づいている。
このレビューは、分子GDLの構造的および調和された概要を提供し、その薬物発見、化学合成予測、量子化学への応用を強調している。
学習された分子の特徴と、確立された分子記述子との相補性に重点を置いている。
論文 参考訳(メタデータ) (2021-07-26T09:23:43Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。