論文の概要: Artificial Intelligent Implications on Health Data Privacy and Confidentiality
- arxiv url: http://arxiv.org/abs/2501.01639v1
- Date: Fri, 03 Jan 2025 05:17:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:12:36.071465
- Title: Artificial Intelligent Implications on Health Data Privacy and Confidentiality
- Title(参考訳): 健康データプライバシと信頼性に関する人工知能の影響
- Authors: Ahmad Momani,
- Abstract要約: 医療における人工知能の急速な統合は、医療診断、パーソナライズされた医療、運用効率に革命をもたらしている。
しかし、患者のデータのプライバシ、倫理的考慮、規制遵守に関する重大な問題が発生する。
本稿では、医療におけるAIの二重効果について検討し、その変革の可能性と、敏感な健康情報を保護するための重要な必要性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid integration of artificial intelligence (AI) in healthcare is revolutionizing medical diagnostics, personalized medicine, and operational efficiency. However, alongside these advancements, significant challenges arise concerning patient data privacy, ethical considerations, and regulatory compliance. This paper examines the dual impact of AI on healthcare, highlighting its transformative potential and the critical need for safeguarding sensitive health information. It explores the role of the Health Insurance Portability and Accountability Act (HIPAA) as a regulatory framework for ensuring data privacy and security, emphasizing the importance of robust safeguards and ethical standards in AI-driven healthcare. Through case studies, including AI applications in diabetic retinopathy, oncology, and the controversies surrounding data sharing, this study underscores the ethical and legal complexities of AI implementation. A balanced approach that fosters innovation while maintaining patient trust and privacy is imperative. The findings emphasize the importance of continuous education, transparency, and adherence to regulatory frameworks to harness AI's full potential responsibly and ethically in healthcare.
- Abstract(参考訳): 医療における人工知能(AI)の急速な統合は、医療診断、パーソナライズド医療、運用効率に革命をもたらしている。
しかし、これらの進歩とともに、患者のデータのプライバシ、倫理的考慮、規制遵守に関する重大な問題が発生する。
本稿では、医療におけるAIの二重効果について検討し、その変革の可能性と、敏感な健康情報を保護するための重要な必要性を強調した。
これは、データプライバシとセキュリティを確保するための規制フレームワークとして、健康保険ポータビリティと説明責任法(HIPAA)の役割を探求し、AI駆動型医療における堅牢な保護と倫理的基準の重要性を強調している。
糖尿病網膜症、腫瘍学、およびデータ共有をめぐる論争におけるAI応用を含むケーススタディを通じて、この研究はAI実装の倫理的・法的複雑さを浮き彫りにする。
患者の信頼とプライバシを維持しながらイノベーションを促進するバランスのとれたアプローチが不可欠である。
この発見は、医療におけるAIの潜在能力を最大限に倫理的に活用するために、継続的教育、透明性、および規制枠組みの遵守の重要性を強調している。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Addressing Intersectionality, Explainability, and Ethics in AI-Driven Diagnostics: A Rebuttal and Call for Transdiciplinary Action [0.30693357740321775]
人工知能の医療診断への統合の増大は、その倫理的および実践的な意味を批判的に検証する必要がある。
本稿は、AIによる診断が多様な人口に公平かつ倫理的に役立っていることを保証するために、正確さと公正性、プライバシ、傾きのバランスをとるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-15T00:00:01Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
我々は、正義と公正、透明性、患者の同意と機密性、説明責任、患者中心で公平なケアの5つの重要な倫理的関心事に焦点を当てる。
この論文は、患者の信頼を維持する上でのバイアス、透明性の欠如、そして課題が、医療におけるAIアプリケーションの有効性と公正性を損なう可能性があるかを考察する。
論文 参考訳(メタデータ) (2024-11-18T00:52:22Z) - The Gradient of Health Data Privacy [15.417809900388262]
本稿では、健康データガバナンスに対する新たな「プライバシ・グラデーション」アプローチを紹介する。
我々の多次元概念は、データ感度、利害関係者の関係、使用目的、時間的側面などの要因を考察する。
このアプローチは、世界中の多様な医療環境において、重要なプライバシー問題にどのように対処できるかを実証する。
論文 参考訳(メタデータ) (2024-10-01T17:35:18Z) - Applications of Generative AI in Healthcare: algorithmic, ethical, legal and societal considerations [0.0]
生成AIは、医療画像とテキスト分析を急速に変換している。
本稿では,正確性,インフォームドコンセント,データプライバシ,アルゴリズム制限の問題について検討する。
我々は、医療における生成AIの倫理的かつ責任ある実装のロードマップを策定することを目指している。
論文 参考訳(メタデータ) (2024-06-15T13:28:07Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - Healthcare Security Breaches in the United States: Insights and their
Socio-Technical Implications [1.0704308511937222]
本研究では,医療データ管理の領域における人間の行動の重要な役割について考察する。
2009年から現在までの米国におけるセキュリティ侵害の詳細な分析は、人間によるセキュリティ侵害の優位性を明らかにしている。
論文 参考訳(メタデータ) (2023-11-07T02:20:31Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Organizational Governance of Emerging Technologies: AI Adoption in
Healthcare [43.02293389682218]
Health AI Partnershipは、医療設定におけるAIシステムの適切な組織的ガバナンスの要件をより適切に定義することを目的としている。
これは、米国の医療システムによるAI導入に関わる、現在のガバナンス構造とプロセスに関する、最も詳細な定性的な分析の1つである。
これらの発見が、医療における新興テクノロジーの安全で効果的で責任ある採用を促進する能力を構築するための将来の取り組みを知らせてくれることを期待している。
論文 参考訳(メタデータ) (2023-04-25T18:30:47Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
この記事では、スマートヘルスケアシステムにおけるAIとともに、エッジインテリジェント技術のメリットを強調します。
スマートヘルスケアシステムにおけるAIとエッジ技術の利用を促進するために、新しいスマートヘルスケアモデルが提案されている。
論文 参考訳(メタデータ) (2021-03-22T19:35:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。