論文の概要: Adverse Weather Conditions Augmentation of LiDAR Scenes with Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.01761v1
- Date: Fri, 03 Jan 2025 11:26:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:33.842929
- Title: Adverse Weather Conditions Augmentation of LiDAR Scenes with Latent Diffusion Models
- Title(参考訳): 潜時拡散モデルによるLiDARシーンの逆気象条件の増大
- Authors: Andrea Matteazzi, Pascal Colling, Michael Arnold, Dietmar Tutsch,
- Abstract要約: 本稿では,オートエンコーダと潜時拡散モデルにより構成される潜時拡散過程を提案する。
我々は,環境条件のクリアなシーンを後処理のステップで活用し,発生した悪天候のシーンの現実性を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: LiDAR scenes constitute a fundamental source for several autonomous driving applications. Despite the existence of several datasets, scenes from adverse weather conditions are rarely available. This limits the robustness of downstream machine learning models, and restrains the reliability of autonomous driving systems in particular locations and seasons. Collecting feature-diverse scenes under adverse weather conditions is challenging due to seasonal limitations. Generative models are therefore essentials, especially for generating adverse weather conditions for specific driving scenarios. In our work, we propose a latent diffusion process constituted by autoencoder and latent diffusion models. Moreover, we leverage the clear condition LiDAR scenes with a postprocessing step to improve the realism of the generated adverse weather condition scenes.
- Abstract(参考訳): LiDARシーンは、いくつかの自動運転アプリケーションの基本源となっている。
いくつかのデータセットが存在するにもかかわらず、悪天候からのシーンはめったに利用できない。
これにより、下流の機械学習モデルの堅牢性が制限され、特定の場所や季節における自律運転システムの信頼性が抑制される。
季節的制約のため、悪天候下での多彩なシーンの収集は困難である。
したがって、生成モデルは、特に特定の運転シナリオに対する悪天候の発生に不可欠である。
本研究では,オートエンコーダと潜時拡散モデルにより構成された潜時拡散過程を提案する。
さらに,LDARシーンを後処理に利用して,発生した悪天候シーンの現実性を改善する。
関連論文リスト
- Multiple weather images restoration using the task transformer and adaptive mixup strategy [14.986500375481546]
本稿では,複雑な気象条件を適応的に効果的に処理できる,マルチタスクの厳しい天候除去モデルを提案する。
本モデルでは,気象タスクシークエンスジェネレータを組み込んで,気象タイプに特有な特徴に選択的に注目する自己認識機構を実現する。
提案モデルでは,公開データセット上での最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-09-05T04:55:40Z) - PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow [0.0]
本稿では,エンジン5を用いて生成した高忠実度ステレオ深度およびシーンフローグラウンド真理データであるダイナミックウェザードライビングデータセットを紹介する。
特に、このデータセットには、様々な動的気象シナリオを再現する、同期された高解像度ステレオ画像シーケンスが含まれている。
Unreal-D3を用いたいくつかの重要な自動運転タスクのためのベンチマークが確立され、最先端モデルの性能を計測し、向上している。
論文 参考訳(メタデータ) (2024-06-11T19:21:46Z) - Real-Time Environment Condition Classification for Autonomous Vehicles [3.8514288339458718]
我々は、屋外の天気と危険な道路状況を特定するために、ディープラーニングモデルを訓練する。
我々は、最先端の悪天候データセットに改良された分類とラベル階層を導入することで、これを実現する。
我々は、単一のRGBフレームから環境条件を分類するためのディープラーニングモデルであるRECNetを訓練する。
論文 参考訳(メタデータ) (2024-05-29T17:29:55Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
本稿では,自動運転分野における最初の大規模ビデオ予測モデルを紹介する。
我々のモデルはGenADと呼ばれ、新しい時間的推論ブロックでシーンを駆動する際の挑戦的なダイナミクスを扱う。
アクション条件付き予測モデルやモーションプランナーに適応することができ、現実世界の運転アプリケーションに大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-03-14T17:58:33Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
テンポラリ・コンポラブル・ディフューザ(TCD)を用いた実効時間条件拡散モデルを提案する。
TCDは、相互作用シーケンスから時間情報を抽出し、時間条件で生成を明示的にガイドする。
提案手法は,従来のSOTAベースラインと比較して最高の性能を達成または一致させる。
論文 参考訳(メタデータ) (2023-06-08T02:12:26Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
本稿では,シーンをレンダリングし,霧のない背景を分解するニューラルネットワークレンダリング手法であるScatterNeRFを紹介する。
本研究では,散乱量とシーンオブジェクトの非絡み合い表現を提案し,物理に着想を得た損失を伴ってシーン再構成を学習する。
マルチビューIn-the-Wildデータをキャプチャして,大規模な霧室内でのキャプチャを制御し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-03T13:24:06Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
本稿では,降雨層に適合する動的降雨発生器を用いた半教師付きビデオデレーシング手法を提案する。
具体的には、1つのエミッションモデルと1つのトランジションモデルから成り、空間的物理的構造と時系列の雨の連続的な変化を同時にエンコードする。
ラベル付き合成およびラベルなしの実データのために、それらの基礎となる共通知識を十分に活用するために、様々な先行フォーマットが設計されている。
論文 参考訳(メタデータ) (2021-03-14T14:28:57Z) - ZeroScatter: Domain Transfer for Long Distance Imaging and Vision
through Scattering Media [26.401067775059154]
我々は、悪天候下で撮影されたRGBのみのキャプチャーを、晴れた昼間のシーンに変換するドメイン転送手法ZeroScatterを提案する。
提案手法は実世界キャプチャーを用いて評価し,提案手法は制御霧室測定において既存の単分子脱散乱法を2.8dBPSNRで上回る性能を示した。
論文 参考訳(メタデータ) (2021-02-11T04:41:17Z) - Multimodal End-to-End Learning for Autonomous Steering in Adverse Road
and Weather Conditions [0.0]
自動ステアリングにおけるエンド・ツー・エンドの学習に関するこれまでの研究を,マルチモーダルデータを用いた有害な実生活環境での運用に拡張する。
道路および気象条件下で28時間の運転データを収集し,車両のハンドル角度を予測するために畳み込みニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2020-10-28T12:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。