Can Synthetic Data be Fair and Private? A Comparative Study of Synthetic Data Generation and Fairness Algorithms
- URL: http://arxiv.org/abs/2501.01785v1
- Date: Fri, 03 Jan 2025 12:35:58 GMT
- Title: Can Synthetic Data be Fair and Private? A Comparative Study of Synthetic Data Generation and Fairness Algorithms
- Authors: Qinyi Liu, Oscar Deho, Farhad Vadiee, Mohammad Khalil, Srecko Joksimovic, George Siemens,
- Abstract summary: We find that the DEbiasing CAusal Fairness (DECAF) algorithm achieves the best balance between privacy and fairness.
Applying pre-processing fairness algorithms to synthetic data improves fairness even more than when applied to real data.
- Score: 2.144088660722956
- License:
- Abstract: The increasing use of machine learning in learning analytics (LA) has raised significant concerns around algorithmic fairness and privacy. Synthetic data has emerged as a dual-purpose tool, enhancing privacy and improving fairness in LA models. However, prior research suggests an inverse relationship between fairness and privacy, making it challenging to optimize both. This study investigates which synthetic data generators can best balance privacy and fairness, and whether pre-processing fairness algorithms, typically applied to real datasets, are effective on synthetic data. Our results highlight that the DEbiasing CAusal Fairness (DECAF) algorithm achieves the best balance between privacy and fairness. However, DECAF suffers in utility, as reflected in its predictive accuracy. Notably, we found that applying pre-processing fairness algorithms to synthetic data improves fairness even more than when applied to real data. These findings suggest that combining synthetic data generation with fairness pre-processing offers a promising approach to creating fairer LA models.
Related papers
- Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
We introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework.
We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score.
Our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.
arXiv Detail & Related papers (2023-12-09T02:04:25Z) - Assessment of Differentially Private Synthetic Data for Utility and
Fairness in End-to-End Machine Learning Pipelines for Tabular Data [3.555830838738963]
Differentially private (DP) synthetic data sets are a solution for sharing data while preserving the privacy of individual data providers.
We identify the most effective synthetic data generation techniques for training and evaluating machine learning models.
arXiv Detail & Related papers (2023-10-30T03:37:16Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Downstream Fairness Caveats with Synthetic Healthcare Data [21.54509987309669]
Privacy laws limit access to health data such as Electronic Medical Records (EMRs) to preserve patient privacy.
This paper evaluates synthetically generated healthcare data for biases and investigates the effect of fairness mitigation techniques on utility-fairness.
arXiv Detail & Related papers (2022-03-09T00:52:47Z) - DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
Networks [71.6879432974126]
We introduce DECAF: a GAN-based fair synthetic data generator for tabular data.
We show that DECAF successfully removes undesired bias and is capable of generating high-quality synthetic data.
We provide theoretical guarantees on the generator's convergence and the fairness of downstream models.
arXiv Detail & Related papers (2021-10-25T12:39:56Z) - Bias Mitigated Learning from Differentially Private Synthetic Data: A
Cautionary Tale [13.881022208028751]
Bias can affect all analyses as the synthetic data distribution is an inconsistent estimate of the real-data distribution.
We propose several bias mitigation strategies using privatized likelihood ratios.
We show that bias mitigation provides simple and effective privacy-compliant augmentation for general applications of synthetic data.
arXiv Detail & Related papers (2021-08-24T19:56:44Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.