Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion Models
- URL: http://arxiv.org/abs/2501.01932v1
- Date: Fri, 03 Jan 2025 18:06:18 GMT
- Title: Bridging Classification and Segmentation in Osteosarcoma Assessment via Foundation and Discrete Diffusion Models
- Authors: Manh Duong Nguyen, Dac Thai Nguyen, Trung Viet Nguyen, Homi Yamada, Huy Hieu Pham, Phi Le Nguyen,
- Abstract summary: We introduce FDDM, a novel framework bridging the gap between patch classification and region-based segmentation.
FDDM operates in two stages: patch-based classification, followed by region-based refinement, enabling cross-patch information intergation.
This framework sets a new benchmark in osteosarcoma assessment, highlighting the potential of foundation models and diffusion-based refinements.
- Score: 3.2090645669282045
- License:
- Abstract: Osteosarcoma, the most common primary bone cancer, often requires accurate necrosis assessment from whole slide images (WSIs) for effective treatment planning and prognosis. However, manual assessments are subjective and prone to variability. In response, we introduce FDDM, a novel framework bridging the gap between patch classification and region-based segmentation. FDDM operates in two stages: patch-based classification, followed by region-based refinement, enabling cross-patch information intergation. Leveraging a newly curated dataset of osteosarcoma images, FDDM demonstrates superior segmentation performance, achieving up to a 10% improvement mIOU and a 32.12% enhancement in necrosis rate estimation over state-of-the-art methods. This framework sets a new benchmark in osteosarcoma assessment, highlighting the potential of foundation models and diffusion-based refinements in complex medical imaging tasks.
Related papers
- A Novel Momentum-Based Deep Learning Techniques for Medical Image Classification and Segmentation [3.268679466097746]
Accurately segmenting different organs from medical images is a critical prerequisite for computer-assisted diagnosis and intervention planning.
This study proposes a deep learning-based approach for segmenting various organs from CT and MRI scans and classifying diseases.
arXiv Detail & Related papers (2024-08-11T04:12:35Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Position-prior Clustering-based Self-attention Module for Knee Cartilage
Segmentation [14.797196965853233]
The morphological changes in knee cartilage are closely related to the progression of knee osteoarthritis.
It is necessary to propose an effective automatic cartilage segmentation model for longitudinal research on osteoarthritis.
arXiv Detail & Related papers (2022-06-21T12:12:16Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Deep Joint Learning of Pathological Region Localization and Alzheimer's
Disease Diagnosis [4.5484714814315685]
BrainBagNet is a framework for jointly learning pathological region localization and Alzheimer's disease diagnosis.
The proposed method represents the patch-level response from whole-brain MRI scans and discriminative brain-region from position information.
In five-fold cross-validation, the classification performance of the proposed method outperformed that of the state-of-the-art methods in both AD diagnosis and mild cognitive impairment prediction tasks.
arXiv Detail & Related papers (2021-08-10T10:06:54Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
We present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung.
Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation.
arXiv Detail & Related papers (2020-06-25T07:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.