論文の概要: Multi-Center Study on Deep Learning-Assisted Detection and Classification of Fetal Central Nervous System Anomalies Using Ultrasound Imaging
- arxiv url: http://arxiv.org/abs/2501.02000v1
- Date: Wed, 01 Jan 2025 07:56:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:12.849084
- Title: Multi-Center Study on Deep Learning-Assisted Detection and Classification of Fetal Central Nervous System Anomalies Using Ultrasound Imaging
- Title(参考訳): 超音波画像を用いた胎児中枢神経系異常の検出と分類に関するマルチセンター研究
- Authors: Yang Qi, Jiaxin Cai, Jing Lu, Runqing Xiong, Rongshang Chen, Liping Zheng, Duo Ma,
- Abstract要約: 出生前超音波は胎児の成長を評価し、妊娠中に先天性異常を検出する。
深層学習モデルを構築し,胎児頭蓋異常の診断の総合的精度を向上させる。
- 参考スコア(独自算出の注目度): 11.261565838608488
- License:
- Abstract: Prenatal ultrasound evaluates fetal growth and detects congenital abnormalities during pregnancy, but the examination of ultrasound images by radiologists requires expertise and sophisticated equipment, which would otherwise fail to improve the rate of identifying specific types of fetal central nervous system (CNS) abnormalities and result in unnecessary patient examinations. We construct a deep learning model to improve the overall accuracy of the diagnosis of fetal cranial anomalies to aid prenatal diagnosis. In our collected multi-center dataset of fetal craniocerebral anomalies covering four typical anomalies of the fetal central nervous system (CNS): anencephaly, encephalocele (including meningocele), holoprosencephaly, and rachischisis, patient-level prediction accuracy reaches 94.5%, with an AUROC value of 99.3%. In the subgroup analyzes, our model is applicable to the entire gestational period, with good identification of fetal anomaly types for any gestational period. Heatmaps superimposed on the ultrasound images not only provide a visual interpretation for the algorithm but also provide an intuitive visual aid to the physician by highlighting key areas that need to be reviewed, helping the physician to quickly identify and validate key areas. Finally, the retrospective reader study demonstrates that by combining the automatic prediction of the DL system with the professional judgment of the radiologist, the diagnostic accuracy and efficiency can be effectively improved and the misdiagnosis rate can be reduced, which has an important clinical application prospect.
- Abstract(参考訳): 出生前超音波は胎児の成長を評価し、妊娠中の先天性異常を検出するが、放射線技師による超音波画像の検査には専門知識と高度な装置が必要である。
出生前診断を支援するため,胎児脳腫瘍の診断の総合的精度を向上させるための深層学習モデルを構築した。
中枢神経系(CNS)の典型的4つの異常を含む胎児脳小脳異常の多中心的データセットにおいて,脳動脈瘤,脳梗塞(髄膜嚢腫を含む),脳幹前頭症,ラチスチシスについて,患者レベルの予測精度は94.5%,AUROC値は99.3%であった。
サブグループ分析では, 妊娠期間全体に適用可能であり, 妊娠期間の胎児異常型の同定が良好である。
超音波画像に重畳されたヒートマップは、アルゴリズムの視覚的解釈を提供するだけでなく、レビューすべき重要な領域を強調し、医師が重要な領域を素早く識別し、検証することを支援することで、医師に直感的な視覚支援を提供する。
最後に, DLシステムの自動予測と放射線技師の専門的判断とを組み合わせることで, 診断精度と効率を効果的に向上し, 誤診率を低減できることを示す。
関連論文リスト
- Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
プライバシー保護型超音波基礎モデルであるUltraFedFMを提案する。
UltraFedFMは、9か国の16の分散医療機関にわたる連合学習を用いて、協調的に事前訓練されている。
疾患診断には0.927のレシーバ動作特性曲線、病変セグメント化には0.878のサイス類似係数を平均的に達成する。
論文 参考訳(メタデータ) (2024-11-25T13:40:11Z) - Deep Learning for Fetal Inflammatory Response Diagnosis in the Umbilical Cord [2.4573404709588673]
子宮の炎症は、子宮内感染などの炎症刺激の上昇の結果であると考えられる。
近年,デジタル病理学における深層学習の進歩は,幅広い臨床課題において良好な成績を示した。
論文 参考訳(メタデータ) (2024-11-14T19:24:46Z) - Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification [3.998431476275487]
本稿では,最大のベンチマークデータセットを分類するために,軽量な人工知能アーキテクチャを提案する。
アプローチは、ImageNet1kで事前トレーニングされた軽量のEfficientNet機能抽出バックボーンから微調整される。
本手法は,特徴を洗練するためのアテンション機構と3層パーセプトロンを組み込んだもので,トップ1の96.25%,トップ2の99.80%,F1スコアの0.9576で優れた性能を実現している。
論文 参考訳(メタデータ) (2024-10-22T20:02:38Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep
Learning Model For The Accurate Caliper Placement To Obtain Sonographic
Measurements Of The Fetal Brain [0.0]
経小脳平面(TC)の2次元USG画像から3つの重要な胎児脳バイオメトリーを計算するための深層学習(DL)手法を提案する。
U-Net DLモデルの精度を向上させるために,臨床的に関連するバイオメトリック制約(校正点間の関連性)とドメイン関連データ拡張を利用した。
いずれの場合も、個々のカリパーポイントの配置における平均誤差と計算されたバイオメトリーは、臨床医の誤差率に匹敵するものであった。
論文 参考訳(メタデータ) (2022-03-28T04:00:22Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Towards A Device-Independent Deep Learning Approach for the Automated
Segmentation of Sonographic Fetal Brain Structures: A Multi-Center and
Multi-Device Validation [0.0]
胎児脳USG画像(2D)から得られた2軸平面から10個の重要な胎児脳構造の自動分割のためのDLベースセグメンテーションフレームワークを提案する。
提案するDLシステムは,有望かつ汎用的な性能(マルチセンタ,マルチデバイス)を提供し,画像品質のデバイスによる変動を支持する証拠を提示する。
論文 参考訳(メタデータ) (2022-02-28T05:42:03Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - FetalNet: Multi-task deep learning framework for fetal ultrasound
biometric measurements [11.364211664829567]
本稿では,FetalNetと呼ばれるマルチタスク・ニューラルネットワークについて,胎児超音波スキャン画像解析のためのアテンション機構とスタックモジュールを提案する。
胎児超音波画像解析の主な目的は、胎児の頭部、腹部、大腿骨を測定するための適切な基準面を見つけることである。
FetalNetという手法は,胎児超音波ビデオ記録における分類とセグメント化の両面で,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2021-07-14T19:13:33Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。