Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data
- URL: http://arxiv.org/abs/2006.12094v1
- Date: Mon, 22 Jun 2020 09:34:12 GMT
- Title: Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data
- Authors: Nabeel Seedat and Vered Aharonson
- Abstract summary: This study applies machine learning methods to discriminate six stages of Parkinson's Disease (PD) progression.
The data was acquired by low cost walker-mounted sensors in an experiment at a movement disorders clinic.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical methods that assess gait in Parkinson's Disease (PD) are mostly
qualitative. Quantitative methods necessitate costly instrumentation or
cumbersome wearable devices, which limits their usability. Only few of these
methods can discriminate different stages in PD progression. This study applies
machine learning methods to discriminate six stages of PD. The data was
acquired by low cost walker-mounted sensors in an experiment at a movement
disorders clinic and the PD stages were clinically labeled. A large set of
features, some unique to this study are extracted and three feature selection
methods are compared using a multi-class Random Forest (RF) classifier. The
feature subset selected by the Analysis of Variance (ANOVA) method provided
performance similar to the full feature set: 93% accuracy and had significantly
shorter computation time. Compared to PCA, this method also enabled clinical
interpretability of the selected features, an essential attribute to healthcare
applications. All selected-feature sets are dominated by information theoretic
features and statistical features and offer insights into the characteristics
of gait deterioration in PD. The results indicate a feasibility of machine
learning to accurately classify PD severity stages from kinematic signals
acquired by low-cost, walker-mounted sensors and implies a potential to aid
medical practitioners in the quantitative assessment of PD progression. The
study presents a solution to the small and noisy data problem, which is common
in most sensor-based healthcare assessments.
Related papers
- Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives.
Various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated.
ESN consistently maintains a false negative rate of less than 8% in 83% of cases.
arXiv Detail & Related papers (2024-01-28T14:39:43Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Machine Learning-Based Detection of Parkinson's Disease From
Resting-State EEG: A Multi-Center Study [0.125828876338076]
Resting-state EEG (rs-EEG) has been demonstrated to aid in Parkinson's disease (PD) diagnosis.
In this work, we use rs-EEG recordings of 84 PD and 85 non-PD subjects pooled from four datasets obtained at different centers.
We propose an end-to-end pipeline consisting of preprocessing, extraction of PSD features from clinically validated frequency bands, and feature selection before evaluating the classification ability of the features via ML algorithms to stratify between PD and non-PD subjects.
arXiv Detail & Related papers (2023-03-02T16:19:24Z) - Diagnosis of Parkinson's Disease Based on Voice Signals Using SHAP and
Hard Voting Ensemble Method [0.0]
Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's.
PD is typically identified using motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT.
These methods are expensive, time-consuming, and unavailable to the general public.
arXiv Detail & Related papers (2022-10-03T19:45:22Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - An Activity Recognition Framework for Continuous Monitoring of
Non-Steady-State Locomotion of Individuals with Parkinson's Disease [0.9137554315375922]
The performance of accelerographic and gyroscopic information from varied lower/upper-body segments were tested across a set of user-independent and user-dependent training paradigms.
Using LSTM, even a subset of information (e.g., feet data) in subject-independent training appeared to provide F1 score > 0.8.
arXiv Detail & Related papers (2021-10-08T20:35:45Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.