Magnetoelectric effect in van der Waals magnets
- URL: http://arxiv.org/abs/2501.02070v2
- Date: Tue, 07 Jan 2025 17:34:15 GMT
- Title: Magnetoelectric effect in van der Waals magnets
- Authors: Kai-Xuan Zhang, Giung Park, Youjin Lee, Beom Hyun Kim, Je-Geun Park,
- Abstract summary: The magnetoelectric (ME) effect represents the electrical control of magnetic polarisations or vice versa.
Two-dimensional (2D) van-der-Waals (vdW) magnets have emerged as a new class of materials.
- Score: 3.040365190565654
- License:
- Abstract: The magnetoelectric (ME) effect is a fundamental concept in modern condensed matter physics and represents the electrical control of magnetic polarisations or vice versa. Two-dimensional (2D) van-der-Waals (vdW) magnets have emerged as a new class of materials and exhibit novel ME effects with diverse manifestations. This review emphasizes some important recent discoveries unique to vdW magnets: multiferroicity on two dimensions, spin-charge correlation, atomic ME effect and current-induced intrinsic spin-orbit torque, and electrical gating control and magnetic control of their electronic properties. We also highlight the promising route of utilizing quantum magnetic hetero- or homo-structures to engineer the ME effect and corresponding spintronic and optoelectronic device applications. Due to the intrinsic two-dimensionality, vdW magnets with those ME effects are expected to form a new, exciting research direction.
Related papers
- Electrical control of magnetism by electric field and current-induced
torques [0.0]
Key insights in condensed matter physics suggested the possibility to do it electrically.
In the 1990s, Slonczewzki and Berger formulated the concept of current-induced spin torques in magnetic multilayers.
More recent research unveiled spin-orbit-torques (SOTs) and will lead to a new generation of devices including SOT-MRAMs.
arXiv Detail & Related papers (2023-11-20T12:42:44Z) - AI-accelerated Discovery of Altermagnetic Materials [48.261668305411845]
Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism.
We propose an automated discovery approach empowered by an AI search engine.
We successfully discovered 50 new altermagnetic materials that cover metals, semiconductors, and insulators.
arXiv Detail & Related papers (2023-11-08T01:06:48Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Non-volatile Electric Control of Magnetic and Topological Properties of
MnBi2Te4 Thin Films [66.02797153096846]
We propose a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling.
This mechanism uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material.
arXiv Detail & Related papers (2022-12-29T14:51:05Z) - Van der Waals Magnet based Spin-Valve Devices at Room Temperature [0.17126708168238122]
We demonstrate room temperature spin-valve devices using vdW itinerantmagnet Fe5GeTe2 in ferrostructures with graphene.
The tunnel spin polarization of the Fe5GeTe2/graphene vdW interface is detected to be significantly large 45 % and negative at room temperature.
These findings open opportunities for the applications of vdW magnet-based all-2D spintronic devices and integrated spin circuits at ambient temperatures.
arXiv Detail & Related papers (2021-07-01T08:58:36Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Electrically switchable entanglement channel in van der Waals magnets [0.0]
Two dimensional layered van der Waals (vdW) magnets have demonstrated their potential to study both fundamental and applied physics.
Here we consider the quantum correlations of magnons in a layered vdW magnet and identify an entanglement channel of magnons across the magnetic layers.
We show that such a tunable entanglement channel can mediate the electrically controllable entanglement of two distant qubits.
arXiv Detail & Related papers (2021-03-29T19:14:22Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum Size Effects in the Magnetic Susceptibility of a Metallic
Nanoparticle [0.0]
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticles.
We compute the induced magnetic moment and the magnetic susceptibility for a nanoparticles in the presence of a static external magnetic field.
We propose two methods for experimental detection of the quantum size effects based on the coupling to superconducting quantum interference devices.
arXiv Detail & Related papers (2020-10-27T15:28:25Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.