AI-Powered Cow Detection in Complex Farm Environments
- URL: http://arxiv.org/abs/2501.02080v1
- Date: Fri, 03 Jan 2025 19:54:38 GMT
- Title: AI-Powered Cow Detection in Complex Farm Environments
- Authors: Voncarlos, Ines, Thomas, Sebastien, Elsa, Marjorie, Abdoulaye,
- Abstract summary: Existing cow detection algorithms face challenges in real-world farming environments.
This study addresses these challenges using a diverse cow dataset from six environments.
YOLOv8-CBAM outperformed YOLOv8 by 2.3% in mAP, achieving 95.2% precision and an mAP@0.5:0.95 of 82.6%.
- Score: 7.956743113777889
- License:
- Abstract: Animal welfare has become a critical issue in contemporary society, emphasizing our ethical responsibilities toward animals, particularly within livestock farming. The advent of Artificial Intelligence (AI) technologies, specifically computer vision, offers an innovative approach to monitoring and enhancing animal welfare. Cows, as essential contributors to sustainable agriculture, are central to this effort. However, existing cow detection algorithms face challenges in real-world farming environments, such as complex lighting, occlusions, pose variations, and background interference, hindering detection. Model generalization is crucial for adaptation across contexts beyond the training dataset. This study addresses these challenges using a diverse cow dataset from six environments, including indoor and outdoor scenarios. We propose a detection model combining YOLOv8 with the CBAM (Convolutional Block Attention Module) and assess its performance against baseline models, including Mask R-CNN, YOLOv5, and YOLOv8. Our findings show baseline models degrade in complex conditions, while our approach improves using CBAM. YOLOv8-CBAM outperformed YOLOv8 by 2.3% in mAP, achieving 95.2% precision and an mAP@0.5:0.95 of 82.6%, demonstrating superior accuracy. Contributions include (1) analyzing detection limitations, (2) proposing a robust model, and (3) benchmarking state-of-the-art algorithms. Applications include health monitoring, behavioral analysis, and tracking in smart farms, enabling precise detection in challenging settings. This study advances AI-driven livestock monitoring, improving animal welfare and smart agriculture.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
We investigate a critical vulnerability in Large Language Models (LLMs)
This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.
We propose an efficient tree-based search methodology to automatically generate CDV examples.
arXiv Detail & Related papers (2025-02-03T18:43:36Z) - AI-Based Teat Shape and Skin Condition Prediction for Dairy Management [1.5645452288168529]
We adapt AI tools to dairy cow teat localization, teat shape, and teat skin condition classifications.
The resulting teat shape prediction model achieves a mean Average Precision (mAP) of 0.783, and the teat skin condition model achieves a mean average precision of 0.828.
arXiv Detail & Related papers (2024-12-22T19:37:07Z) - AI-Driven Real-Time Monitoring of Ground-Nesting Birds: A Case Study on Curlew Detection Using YOLOv10 [0.07255608805275862]
This study presents an AI-driven approach for real-time species detection, focusing on the curlew (Numenius arquata)
A custom-trained YOLOv10 model was developed to detect and classify curlews and their chicks using 3/4G-enabled cameras linked to the Conservation AI platform.
Across 11 nesting sites in Wales, the model achieved high performance, with a sensitivity of 90.56%, specificity of 100%, and F1-score of 95.05% for curlew detections.
arXiv Detail & Related papers (2024-11-22T10:36:29Z) - BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes [0.6267336085190178]
BuckTales is the first large-scale UAV dataset designed to solve multi-object tracking and re-identification problem in wild animals.
The MOT dataset includes over 1.2 million annotations including 680 tracks across 12 high-resolution (5.4K) videos.
The Re-ID dataset includes 730 individuals captured with two UAVs simultaneously.
arXiv Detail & Related papers (2024-11-11T11:55:14Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - A Model Generalization Study in Localizing Indoor Cows with COw LOcalization (COLO) dataset [0.0]
This study investigates the generalization capabilities of YOLOv8 and YOLOv9 models for cow detection in indoor free-stall barn settings.
We explore three key hypotheses: (1) Model generalization is equally influenced by changes in lighting conditions and camera angles; (2) Higher model complexity guarantees better generalization performance; (3) Fine-tuning with custom initial weights trained on relevant tasks always brings advantages to detection tasks.
arXiv Detail & Related papers (2024-07-29T18:49:58Z) - Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey [3.3651853492305177]
This study presents the first systematic survey of publicly available livestock CV datasets.
Among 58 public datasets identified and analyzed, almost half of them are for cattle, followed by swine, poultry, and other animals.
Individual animal detection and color imaging are the dominant application and imaging modality for livestock.
arXiv Detail & Related papers (2024-06-15T13:22:41Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behavior and conservation strategies.
Using elephants, a crucial species in Africa's protected areas, as our focal point, we delve into the role of AI and ML in their conservation.
New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked.
arXiv Detail & Related papers (2023-06-23T22:35:51Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.