論文の概要: Personalized Graph-Based Retrieval for Large Language Models
- arxiv url: http://arxiv.org/abs/2501.02157v1
- Date: Sat, 04 Jan 2025 01:46:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:44.588670
- Title: Personalized Graph-Based Retrieval for Large Language Models
- Title(参考訳): 大規模言語モデルのためのパーソナライズされたグラフベース検索
- Authors: Steven Au, Cameron J. Dimacali, Ojasmitha Pedirappagari, Namyong Park, Franck Dernoncourt, Yu Wang, Nikos Kanakaris, Hanieh Deilamsalehy, Ryan A. Rossi, Nesreen K. Ahmed,
- Abstract要約: ユーザ中心の知識グラフを利用してパーソナライゼーションを強化するフレームワークを提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストにプロンプトを拡大することにより、PGraphはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
- 参考スコア(独自算出の注目度): 51.7278897841697
- License:
- Abstract: As large language models (LLMs) evolve, their ability to deliver personalized and context-aware responses offers transformative potential for improving user experiences. Existing personalization approaches, however, often rely solely on user history to augment the prompt, limiting their effectiveness in generating tailored outputs, especially in cold-start scenarios with sparse data. To address these limitations, we propose Personalized Graph-based Retrieval-Augmented Generation (PGraphRAG), a framework that leverages user-centric knowledge graphs to enrich personalization. By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraphRAG enhances contextual understanding and output quality. We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable. Experimental results show that PGraphRAG significantly outperforms state-of-the-art personalization methods across diverse tasks, demonstrating the unique advantages of graph-based retrieval for personalization.
- Abstract(参考訳): 大きな言語モデル(LLM)が進化するにつれて、パーソナライズされたコンテキスト対応の応答を提供する能力は、ユーザエクスペリエンスを改善するための変革的なポテンシャルを提供します。
しかし、既存のパーソナライゼーションアプローチは、ユーザー履歴にのみ依存してプロンプトを増強し、特にスパースデータによるコールドスタートシナリオにおいて、調整されたアウトプットの生成の有効性を制限していることが多い。
これらの制約に対処するため、パーソナライズされたグラフベースの検索・拡張生成(PGraphRAG)を提案する。
構造化されたユーザ知識を直接検索プロセスに統合し、ユーザ関連コンテキストでプロンプトを増強することにより、PGraphRAGはコンテキスト理解と出力品質を向上させる。
また,ユーザ履歴が不足あるいは利用できない実環境において,パーソナライズされたテキスト生成タスクを評価するために設計された,パーソナライズドグラフベースのテキスト生成ベンチマークを導入する。
実験の結果,PGraphRAGは様々なタスクにまたがって最先端のパーソナライズ手法よりも優れており,グラフに基づくパーソナライズ検索の独特な利点が示された。
関連論文リスト
- Guided Profile Generation Improves Personalization with LLMs [3.2685922749445617]
勧告、ランク付け、Eコマースプラットフォームを含む現代の商業システムでは、パーソナライズコンテキストを大型言語モデル(LLM)への入力として取り入れる傾向にある。
本稿では,自然言語で個人プロファイルを生成するための汎用手法であるGPGを提案する。
実験の結果,GAGはLLMのパーソナライズ能力を向上させることが示され,例えば,LLMを生の個人的コンテキストで直接供給するよりも,個人の嗜好を予測する上で37%の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-09-19T21:29:56Z) - PersonaRAG: Enhancing Retrieval-Augmented Generation Systems with User-Centric Agents [0.9135658693137204]
本稿では,リアルタイムなユーザデータとインタラクションに基づく検索と生成にユーザ中心のエージェントを取り入れた新しいフレームワークであるPersonaRAGを紹介する。
その結果,ユーザ適応型情報検索システムにおける有望な方向性が示唆された。
論文 参考訳(メタデータ) (2024-07-12T16:18:00Z) - Step-Back Profiling: Distilling User History for Personalized Scientific Writing [50.481041470669766]
大きな言語モデル(LLM)は、さまざまな自然言語処理タスクに優れていますが、個人向けにパーソナライズされたコンテンツを生成するのに苦労しています。
ユーザ履歴を簡潔なプロファイルに抽出することで,LSMをパーソナライズするためのSTEP-BACK ProFIlingを導入する。
本手法は,一般パーソナライゼーションベンチマークにおいて,ベースラインを最大3.6ポイント向上させる。
論文 参考訳(メタデータ) (2024-06-20T12:58:26Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
本稿では,タスクコンテキスト間の一般化を改善するための階層的な構築プロセスからなる,シンプルで効果的なフレームワークであるPersona-DBを紹介する。
応答予測の評価において,Persona-DB は精度を著しく低減した検索サイズで維持する上で,より優れたコンテキスト効率を示す。
我々の実験は、ユーザーが極めて少ないデータを持つ場合、コールドスタートシナリオで10%以上の顕著な改善が示されていることも示している。
論文 参考訳(メタデータ) (2024-02-16T20:20:43Z) - Leveraging Large Language Models for Node Generation in Few-Shot Learning on Text-Attributed Graphs [5.587264586806575]
本稿では,Large Language Models (LLMs) を用いたノード生成によるテキスト分散グラフの強化のためのプラグイン・アンド・プレイ手法を提案する。
LLMはラベルから意味情報を抽出し、模範としてカテゴリに属するサンプルを生成する。
エッジ予測器を用いて、生のデータセットに固有の構造情報をキャプチャし、新たに生成されたサンプルを元のグラフに統合する。
論文 参考訳(メタデータ) (2023-10-15T16:04:28Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
応答生成のためのスタイル特化属性を学習するために,モデルパラメータの0.3%しか更新しない新しい転送学習フレームワークを提案する。
我々はPERSONALITY-CAPTIONSデータセットからスタイル固有の属性を学習する。
論文 参考訳(メタデータ) (2022-10-07T00:09:22Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
本研究では,既存のシーングラフを自然言語クエリに基づいて更新する方法を学習するために,シーングラフ修正(SGM)に注目した。
インクリメンタル構造拡張(ISE)の導入によるグラフ拡張タスクとしてのSGM
既存のデータセットよりも複雑なクエリと大きなシーングラフを含む、挑戦的なデータセットを構築します。
論文 参考訳(メタデータ) (2022-09-15T16:26:14Z) - Incremental user embedding modeling for personalized text classification [12.381095398791352]
個々のユーザプロファイルとインタラクション履歴は、現実世界のアプリケーションでカスタマイズされたエクスペリエンスを提供する上で重要な役割を果たす。
本稿では,ユーザの最近のインタラクション履歴を動的に統合したインクリメンタルなユーザ埋め込みモデリング手法を提案する。
Redditデータセットに基づくパーソナライズされた多クラス分類タスクに適用することで,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-13T17:33:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。