論文の概要: Interpretable Load Forecasting via Representation Learning of Geo-distributed Meteorological Factors
- arxiv url: http://arxiv.org/abs/2501.02241v1
- Date: Sat, 04 Jan 2025 09:05:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:44.823013
- Title: Interpretable Load Forecasting via Representation Learning of Geo-distributed Meteorological Factors
- Title(参考訳): 地理的に分散した気象因子の表現学習による解釈可能な負荷予測
- Authors: Yangze Zhou, Guoxin Lin, Gonghao Zhang, Yi Wang,
- Abstract要約: 気象要因 (MF) は, 消費者の電力消費行動に大きな影響を与えるため, 日頭負荷予測において重要である。
地域内の様々な場所で収集されたMFの違いは重要であり、多くの場所から適切なMFを選択することが困難である。
空間的関係を考慮しつつ、地理的に分散したMFを抽出する表現学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.998962281945562
- License:
- Abstract: Meteorological factors (MF) are crucial in day-ahead load forecasting as they significantly influence the electricity consumption behaviors of consumers. Numerous studies have incorporated MF into the load forecasting model to achieve higher accuracy. Selecting MF from one representative location or the averaged MF as the inputs of the forecasting model is a common practice. However, the difference in MF collected in various locations within a region may be significant, which poses a challenge in selecting the appropriate MF from numerous locations. A representation learning framework is proposed to extract geo-distributed MF while considering their spatial relationships. In addition, this paper employs the Shapley value in the graph-based model to reveal connections between MF collected in different locations and loads. To reduce the computational complexity of calculating the Shapley value, an acceleration method is adopted based on Monte Carlo sampling and weighted linear regression. Experiments on two real-world datasets demonstrate that the proposed method improves the day-ahead forecasting accuracy, especially in extreme scenarios such as the "accumulation temperature effect" in summer and "sudden temperature change" in winter. We also find a significant correlation between the importance of MF in different locations and the corresponding area's GDP and mainstay industry.
- Abstract(参考訳): 気象要因 (MF) は, 消費者の電力消費行動に大きな影響を与えるため, 日頭負荷予測において重要である。
多くの研究がMFを負荷予測モデルに組み込んで精度を高めている。
予測モデルの入力として、ある代表位置または平均的なMFからMFを選択することが一般的な慣行である。
しかし、地域内の様々な場所で収集されたMFの違いは重要であり、多くの場所から適切なMFを選択することが困難である。
空間的関係を考慮しつつ、地理的に分散したMFを抽出する表現学習フレームワークを提案する。
さらに、グラフベースモデルにおけるShapley値を用いて、異なる場所で収集されたMF間の接続と負荷を明らかにする。
シェープリー値を計算する際の計算複雑性を低減するため,モンテカルロサンプリングと重み付き線形回帰に基づく加速度法を採用した。
実世界の2つのデータセットを用いた実験では,特に夏季の「蓄積温度効果」や冬季の「沈降温度変化」といった極端なシナリオにおいて,提案手法が日頭予測精度を向上させることが示されている。
また、異なる地域におけるMFの重要性と、対応する地域のGDPと主要産業との間に有意な相関関係があることを見出した。
関連論文リスト
- Local vs. Global Models for Hierarchical Forecasting [0.0]
本研究では,情報活用が階層的予測の精度に与える影響について検討する。
我々は,クロスシリーズとクロス階層情報を活用するために,グローバル予測モデル(GFM)を開発した。
LightGBM に基づく2つの特定の GFM が導入された。
論文 参考訳(メタデータ) (2024-11-10T08:51:49Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Applications of machine learning to predict seasonal precipitation for East Africa [0.0]
大規模な気候変動は、局所的または地域的温度または降水と線形または非線型な方法で関連付けられている。
本稿では,東アフリカにおける季節降水量の予測に解釈可能なML手法を用いることを検討した。
論文 参考訳(メタデータ) (2024-09-10T06:16:03Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Surrogate Ensemble Forecasting for Dynamic Climate Impact Models [0.0]
本研究は, マラリア感染係数R0を予測するリバプールマラリアモデル(LMM)について考察した。
入力および出力データは、ランダムフォレスト量子回帰(RFQR)モデルとベイズ長短期記憶(BLSTM)ニューラルネットワークの形式で代理モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2022-04-12T13:30:01Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter Data [3.0839245814393728]
我々は,大域的なモデル予測を説明するために,局所解釈可能なモデルに依存しないルールベース予測(LIMREF)を提案する。
本稿では,LIMREFフレームワークによる説明の質を質的・定量的に評価する。
論文 参考訳(メタデータ) (2022-02-15T22:35:11Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
気温、風速、日照時間、湿度、太陽放射などの気候変化は蒸発過程に大きな影響を及ぼす可能性がある。
本研究の目的は、毎月のパン蒸発推定をモデル化するための機械学習(ML)モデルの有効性を検討することである。
論文 参考訳(メタデータ) (2021-10-10T10:06:16Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。