Diabetic Retinopathy Detection Using CNN with Residual Block with DCGAN
- URL: http://arxiv.org/abs/2501.02300v1
- Date: Sat, 04 Jan 2025 14:48:28 GMT
- Title: Diabetic Retinopathy Detection Using CNN with Residual Block with DCGAN
- Authors: Debjany Ghosh Aronno, Sumaiya Saeha,
- Abstract summary: Diabetic Retinopathy (DR) is a major cause of blindness worldwide, caused by damage to the blood vessels in the retina due to diabetes.
This work proposes an automated system for DR detection using Convolutional Neural Networks (CNNs) with a residual block architecture.
- Score: 0.0
- License:
- Abstract: Diabetic Retinopathy (DR) is a major cause of blindness worldwide, caused by damage to the blood vessels in the retina due to diabetes. Early detection and classification of DR are crucial for timely intervention and preventing vision loss. This work proposes an automated system for DR detection using Convolutional Neural Networks (CNNs) with a residual block architecture, which enhances feature extraction and model performance. To further improve the model's robustness, we incorporate advanced data augmentation techniques, specifically leveraging a Deep Convolutional Generative Adversarial Network (DCGAN) for generating diverse retinal images. This approach increases the variability of training data, making the model more generalizable and capable of handling real-world variations in retinal images. The system is designed to classify retinal images into five distinct categories, from No DR to Proliferative DR, providing an efficient and scalable solution for early diagnosis and monitoring of DR progression. The proposed model aims to support healthcare professionals in large-scale DR screening, especially in resource-constrained settings.
Related papers
- DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation [17.396365010722423]
Retinal vascular morphology is crucial for diagnosing diseases such as diabetes, glaucoma, and hypertension.
Traditional segmentation methods assume that training and testing data share similar distributions, which can lead to poor performance on unseen domains.
This paper presents a novel approach, DGSSA, for retinal vessel image segmentation that enhances model generalization by combining structural and style augmentation strategies.
arXiv Detail & Related papers (2025-01-07T01:47:57Z) - Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision.
The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR.
Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images.
arXiv Detail & Related papers (2024-11-02T14:02:45Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
This research aims to improve diabetic retinopathy diagnosis by developing an enhanced deep learning model for timely DR identification.
The proposed model will detect various lesions from retinal images in the early stages.
arXiv Detail & Related papers (2023-05-08T14:17:33Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Detecting Severity of Diabetic Retinopathy from Fundus Images: A Transformer Network-based Review [1.3217592635033124]
Diabetic Retinopathy (DR) is considered one of the significant concerns worldwide.
This paper deals with an automated understanding of the severity stages of DR.
We adopt and fine-tune transformer-based learning models to capture the crucial features of retinal images.
arXiv Detail & Related papers (2023-01-03T07:05:38Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.