論文の概要: Framework for lung CT image segmentation based on UNet++
- arxiv url: http://arxiv.org/abs/2501.02428v1
- Date: Sun, 05 Jan 2025 03:23:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:06:13.003916
- Title: Framework for lung CT image segmentation based on UNet++
- Title(参考訳): UNet++に基づく肺CT画像分割のためのフレームワーク
- Authors: Hao Ziang, Jingsi Zhang, Lixian Li,
- Abstract要約: 先進的なUNet++モデルをマージする新しいプロセス網を提案する。
多様な手法を取り入れることで、トレーニング結果は類似の作業に対して大きな優位性を示す。
肺スライスCT像を最初に対象としたネットワークとして,我々のネットワークは注目に値する。
- 参考スコア(独自算出の注目度): 0.4915744683251151
- License:
- Abstract: Recently, the state-of-art models for medical image segmentation is U-Net and their variants. These networks, though succeeding in deriving notable results, ignore the practical problem hanging over the medical segmentation field: overfitting and small dataset. The over-complicated deep neural networks unnecessarily extract meaningless information, and a majority of them are not suitable for lung slice CT image segmentation task. To overcome the two limitations, we proposed a new whole-process network merging advanced UNet++ model. The network comprises three main modules: data augmentation, optimized neural network, parameter fine-tuning. By incorporating diverse methods, the training results demonstrate a significant advantage over similar works, achieving leading accuracy of 98.03% with the lowest overfitting. potential. Our network is remarkable as one of the first to target on lung slice CT images.
- Abstract(参考訳): 近年,医用画像セグメンテーションの最先端モデルはU-Netとその変種である。
これらのネットワークは、顕著な結果の導出に成功しているが、医療セグメンテーション分野に掛かる実践的な問題、すなわち過度な適合と小さなデータセットを無視している。
過度に複雑化したディープニューラルネットワークは、無意味な情報を不要に抽出し、その大部分は、肺スライスCT画像分割タスクには適さない。
この2つの制限を克服するため,我々は,高度なUNet++モデルを統合した,プロセス全体のネットワークを提案する。
データ拡張、最適化されたニューラルネットワーク、パラメータの微調整の3つの主要モジュールで構成されている。
様々な手法を取り入れることで、トレーニング結果は類似の作業に対して大きな優位性を示し、最も低いオーバーフィッティングで98.03%の先行精度を達成した。
可能性
肺スライスCT像を最初に対象としたネットワークとして,我々のネットワークは注目に値する。
関連論文リスト
- WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
医療画像の深層学習は、大量のトレーニングデータを必要とするため、制限されている。
画像フォレスティング変換を用いて、画像を最適にスーパーピクセルに分割する。
これらのスーパーピクセルはその後、グラフ構造化データに変換され、特徴の巧妙な抽出と関係のモデリングを可能にする。
論文 参考訳(メタデータ) (2023-11-13T13:20:54Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Improved distinct bone segmentation in upper-body CT through
multi-resolution networks [0.39583175274885335]
上半身CTと異なる骨分画では、大きな視野と計算的な3Dアーキテクチャが必要とされる。
これにより、空間的コンテキストの欠如により、細部や局所的な誤差を欠いた低解像度な結果が得られる。
本稿では,異なる解像度で動作する複数の3次元U-Netを組み合わせたエンドツーエンドのトレーニング可能なセグメンテーションネットワークを提案する。
論文 参考訳(メタデータ) (2023-01-31T14:46:16Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。