論文の概要: Citation Structural Diversity: A Novel and Concise Metric Combining Structure and Semantics for Literature Evaluation
- arxiv url: http://arxiv.org/abs/2501.02429v1
- Date: Sun, 05 Jan 2025 03:24:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:05:19.046356
- Title: Citation Structural Diversity: A Novel and Concise Metric Combining Structure and Semantics for Literature Evaluation
- Title(参考訳): Citation Structure Diversity: 文学評価のための構造とセマンティクスを組み合わせた新しい簡潔なメトリクス
- Authors: Mingyue Kong, Yinglong Zhang, Likun Sheng, Kaifeng Hong,
- Abstract要約: 本研究は,引用構造多様性モデルが引用量および長期的影響に与える影響について検討した。
その結果、引用頻度と持続的な学術的影響の両方において、高い引用構造多様性を持つ文献が顕著な優位性を示すことが明らかとなった。
- 参考スコア(独自算出の注目度): 0.562479170374811
- License:
- Abstract: As academic research becomes increasingly diverse, traditional literature evaluation methods face significant limitations,particularly in capturing the complexity of academic dissemination and the multidimensional impacts of literature. To address these challenges, this paper introduces a novel literature evaluation model of citation structural diversity, with a focus on assessing its feasibility as an evaluation metric. By refining citation network and incorporating both ciation structural features and semantic information, the study examines the influence of the proposed model of citation structural diversity on citation volume and long-term academic impact. The findings reveal that literature with higher citation structural diversity demonstrates notable advantages in both citation frequency and sustained academic influence. Through data grouping and a decade-long citation trend analysis, the potential application of this model in literature evaluation is further validated. This research offers a fresh perspective on optimizing literature evaluation methods and emphasizes the distinct advantages of citation structural diversity in measuring interdisciplinarity.
- Abstract(参考訳): 学術研究が多様化するにつれて、従来の文献評価手法は、特に学術的普及の複雑さと多次元的影響を捉える際に、重大な制限に直面している。
これらの課題に対処するため,本研究では,引用構造多様性の新たな文献評価モデルを導入し,その有効性を評価指標として評価することを目的とした。
本研究は,引用ネットワークを精査し,ciation構造の特徴と意味情報の両方を取り入れることで,引用構造多様性モデルが引用量および長期的影響に与える影響について検討した。
その結果、引用頻度と持続的な学術的影響の両方において、高い引用構造多様性を持つ文献が顕著な優位性を示すことが明らかとなった。
データグループ化と10年にわたる引用傾向分析により,本モデルが文献評価に有効である可能性がさらに検証された。
本研究は,文献評価手法の最適化に新たな視点を与え,学際性の測定における引用構造多様性の明確なメリットを強調した。
関連論文リスト
- Bridging the Evaluation Gap: Leveraging Large Language Models for Topic Model Evaluation [0.0]
本研究では,Large Language Models (LLMs) を用いた科学文献における動的に進化するトピックの自動評価のための枠組みを提案する。
提案手法は,専門家のアノテータや狭義の統計指標に大きく依存することなく,コヒーレンス,反復性,多様性,トピック文書のアライメントといった重要な品質次元を測定するためにLLMを利用する。
論文 参考訳(メタデータ) (2025-02-11T08:23:56Z) - Why do you cite? An investigation on citation intents and decision-making classification processes [1.7812428873698407]
本研究は,引用意図を信頼して分類することの重要性を強調する。
本稿では,citation Intent Classification (CIC) のための高度なアンサンブル戦略を用いた研究について述べる。
我々のモデルの1つは、SciCiteベンチマークで89.46%のマクロF1スコアを持つ新しい最先端(SOTA)として設定されている。
論文 参考訳(メタデータ) (2024-07-18T09:29:33Z) - Time to Cite: Modeling Citation Networks using the Dynamic Impact
Single-Event Embedding Model [0.33123773366516646]
引用ネットワークはシングルイベント動的ネットワークの顕著な例である。
このような単一イベントネットワークのキャラクタリゼーションのための新しい可能性関数を提案する。
Dynamic Impact Single-Event Embedding Model (DISEE)は、静的潜伏距離ネットワークの埋め込みアプローチを古典的な動的影響評価と照合する。
論文 参考訳(メタデータ) (2024-02-28T22:59:26Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - A Content-Based Novelty Measure for Scholarly Publications: A Proof of
Concept [9.148691357200216]
学術出版物にノベルティの情報理論尺度を導入する。
この尺度は、学術談話の単語分布を表す言語モデルによって知覚される「サプライズ」の度合いを定量化する。
論文 参考訳(メタデータ) (2024-01-08T03:14:24Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
ピアレビューは、ほとんどの科学分野における出版プロセスの重要な要素である。
既存のNLP研究は個々のテキストの分析に重点を置いている。
編集補助は、しばしばテキストのペア間の相互作用をモデル化する必要がある。
論文 参考訳(メタデータ) (2022-04-22T16:39:38Z) - Enhancing Identification of Structure Function of Academic Articles
Using Contextual Information [6.28532577139029]
本稿では,学術論文の構造的機能を明らかにするためのコーパスとして,ACLカンファレンスの記事を取り上げる。
従来の機械学習モデルとディープラーニングモデルを用いて、様々な特徴入力に基づいて分類器を構築する。
2) に触発された本論文は,ディープラーニングモデルに文脈情報を導入し,重要な結果を得た。
論文 参考訳(メタデータ) (2021-11-28T11:21:21Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。