論文の概要: A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- arxiv url: http://arxiv.org/abs/2402.12928v5
- Date: Sat, 14 Dec 2024 14:04:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:51:53.394801
- Title: A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence
- Title(参考訳): パターン分析とマシンインテリジェンスにおける文献レビュー
- Authors: Penghai Zhao, Xin Zhang, Jiayue Cao, Ming-Ming Cheng, Jian Yang, Xiang Li,
- Abstract要約: パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
- 参考スコア(独自算出の注目度): 55.33653554387953
- License:
- Abstract: The rapid advancements in Pattern Analysis and Machine Intelligence (PAMI) have led to an overwhelming expansion of scientific knowledge, spawning numerous literature reviews aimed at collecting and synthesizing fragmented information. This paper presents a thorough analysis of these literature reviews within the PAMI field, and tries to address three core research questions: (1) What are the prevalent structural and statistical characteristics of PAMI literature reviews? (2) What strategies can researchers employ to efficiently navigate the growing corpus of reviews? (3) What are the advantages and limitations of AI-generated reviews compared to human-authored ones? To address the first research question, we begin with a narrative overview to highlight common preferences in composing PAMI reviews, followed by a statistical analysis to quantitatively uncover patterns in these preferences. Our findings reveal several key insights. First, fewer than 20% of PAMI reviews currently comply with PRISMA standards, although this proportion is gradually increasing. Second, there is a moderate positive correlation between the quality of references and the scholarly impact of reviews, emphasizing the importance of reference selection. To further assist researchers in efficiently managing the rapidly growing number of literature reviews, we introduce four novel, real-time, article-level bibliometric indicators that facilitate the screening of numerous reviews. Finally, our comparative analysis reveals that AI-generated reviews currently fall short of human-authored ones in accurately evaluating the academic significance of newly published articles and integrating rich visual elements, which limits their practical utility. Overall, this study provides a deeper understanding of PAMI literature reviews by uncovering key trends, evaluating current practices, and highlighting areas for future improvement.
- Abstract(参考訳): パターン分析とマシンインテリジェンス(PAMI)の急速な進歩は、科学的知識の圧倒的な拡大をもたらし、断片化された情報の収集と合成を目的とした多くの文献レビューを生み出した。
本稿は、PAMI分野におけるこれらの文献レビューを徹底的に分析し、(1)PAMI文献レビューの構造的特徴と統計的特徴について、3つの中核的な研究課題に対処しようとするものである。
2) 研究者は、増大するレビューコーパスを効率的にナビゲートするために、どのような戦略を採ることができるか。
(3)人間によるレビューと比べ、AIによるレビューの利点と限界は何か。
最初の研究課題に対処するために、我々はPAMIレビューの作成において共通の嗜好を強調する物語概要から始め、続いてこれらの選好のパターンを定量的に解明する統計分析を行った。
我々の発見はいくつかの重要な洞察を浮き彫りにした。
まず、PAMIレビューの20%未満がPRISMA標準に準拠しているが、この割合は徐々に増加している。
第2に、参照の質とレビューの学術的影響との間には適度な正の相関関係があり、参照選択の重要性を強調している。
本研究は, 論文レビューの迅速化を支援するために, 多数の文献レビューのスクリーニングを容易にする4つの新しい, リアルタイム, 記事レベルの文献指標を導入する。
最後に、我々の比較分析により、AIが作成したレビューは、新しく公開された記事の学術的重要性を正確に評価し、リッチな視覚要素を統合することで、人間によるレビューに不足していることが明らかになった。
本研究は、PAMI文献レビューの理解を深め、重要なトレンドを明らかにし、現在の実践を評価し、今後の改善に向けての領域を明らかにする。
関連論文リスト
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Generative Adversarial Reviews: When LLMs Become the Critic [1.2430809884830318]
本稿では,LLMを利用したエージェントを利用して,忠実なピアレビュアーをシミュレートするジェネレーティブエージェントレビュアー(GAR)を紹介する。
このアプローチの中心は、グラフベースの原稿表現であり、コンテンツを凝縮し、情報を論理的に整理する。
本実験は,GARが人間レビュアーに対して,詳細なフィードバックと論文結果の予測を行う上で,相容れない性能を示すことを示した。
論文 参考訳(メタデータ) (2024-12-09T06:58:17Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - AgentReview: Exploring Peer Review Dynamics with LLM Agents [13.826819101545926]
本稿では,最初の大規模言語モデル(LLM)に基づくピアレビューシミュレーションフレームワークであるAgentReviewを紹介する。
本研究は、レビュアーの偏見による紙の判断の37.1%の顕著な変化を含む、重要な洞察を明らかにした。
論文 参考訳(メタデータ) (2024-06-18T15:22:12Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - State-of-the-art generalisation research in NLP: A taxonomy and review [87.1541712509283]
NLPにおける一般化研究の特徴付けと理解のための分類法を提案する。
我々の分類学は、一般化研究の広範な文献レビューに基づいている。
私たちは、一般化をテストする400以上の論文を分類するために分類を使います。
論文 参考訳(メタデータ) (2022-10-06T16:53:33Z) - A Systematic Literature Review of Empiricism and Norms of Reporting in
Computing Education Research Literature [4.339510167603376]
本研究の目的は,コンピュータ教育研究(CER)文学における経験主義の報告を特徴付けることである。
2014年と2015年に5つのCER会場で427件の論文のSLRを行った。
80%以上の論文がある種の経験的評価をしていた。
論文 参考訳(メタデータ) (2021-07-02T16:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。