Network Dynamics-Based Framework for Understanding Deep Neural Networks
- URL: http://arxiv.org/abs/2501.02436v3
- Date: Wed, 11 Jun 2025 14:48:58 GMT
- Title: Network Dynamics-Based Framework for Understanding Deep Neural Networks
- Authors: Yuchen Lin, Yong Zhang, Sihan Feng, Hong Zhao,
- Abstract summary: We propose a theoretical framework to analyze learning dynamics through the lens of dynamical systems theory.<n>We redefine the notions of linearity and nonlinearity in neural networks by introducing two fundamental transformation units at the neuron level.<n>Different transformation modes lead to distinct collective behaviors in weight vector organization, different modes of information extraction, and the emergence of qualitatively different learning phases.
- Score: 11.44947569206928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in artificial intelligence call for a deeper understanding of the fundamental mechanisms underlying deep learning. In this work, we propose a theoretical framework to analyze learning dynamics through the lens of dynamical systems theory. We redefine the notions of linearity and nonlinearity in neural networks by introducing two fundamental transformation units at the neuron level: order-preserving transformations and non-order-preserving transformations. Different transformation modes lead to distinct collective behaviors in weight vector organization, different modes of information extraction, and the emergence of qualitatively different learning phases. Transitions between these phases may occur during training, accounting for key phenomena such as grokking. To further characterize generalization and structural stability, we introduce the concept of attraction basins in both sample and weight spaces. The distribution of neurons with different transformation modes across layers, along with the structural characteristics of the two types of attraction basins, forms a set of core metrics for analyzing the performance of learning models. Hyperparameters such as depth, width, learning rate, and batch size act as control variables for fine-tuning these metrics. Our framework not only sheds light on the intrinsic advantages of deep learning, but also provides a novel perspective for optimizing network architectures and training strategies.
Related papers
- Feature Learning beyond the Lazy-Rich Dichotomy: Insights from Representational Geometry [7.517013801971377]
Integrating task-relevant information into neural representations is a fundamental ability of both biological and artificial intelligence systems.<n>Recent theories have categorized learning into two regimes: the rich regime, where neural networks actively learn task-relevant features, and the lazy regime, where networks behave like random feature models.<n>We introduce an analysis framework to study feature learning via the geometry of neural representations.
arXiv Detail & Related papers (2025-03-23T15:39:56Z) - Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.
We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.
This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.<n>Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.<n>These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We explore intersections between sparse coding and deep learning to enhance our understanding of feature extraction capabilities.<n>We derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features.<n>Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
We review the literature on statistical theories of neural networks from three perspectives.
Results on excess risks for neural networks are reviewed.
Papers that attempt to answer how the neural network finds the solution that can generalize well on unseen data'' are reviewed.
arXiv Detail & Related papers (2024-01-14T02:30:19Z) - Three Mechanisms of Feature Learning in a Linear Network [0.34530027457862006]
We present an exact solution for the learning dynamics of a one-hidden-layer linear network, with one-dimensional data, across any finite width.<n>We identify three novel prototype mechanisms specific to the feature learning regime.<n>Our findings are substantiated with empirical evidence showing that these mechanisms also manifest in deep nonlinear networks handling real-world tasks.
arXiv Detail & Related papers (2024-01-13T14:21:46Z) - A Waddington landscape for prototype learning in generalized Hopfield
networks [0.0]
We study the learning dynamics of Generalized Hopfield networks.
We observe a strong resemblance to the canalized, or low-dimensional, dynamics of cells as they differentiate.
arXiv Detail & Related papers (2023-12-04T21:28:14Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Beyond Geometry: Comparing the Temporal Structure of Computation in
Neural Circuits with Dynamical Similarity Analysis [7.660368798066376]
We introduce a novel similarity metric that compares two systems at the level of their dynamics.
Our method opens the door to comparative analyses of the essential temporal structure of computation in neural circuits.
arXiv Detail & Related papers (2023-06-16T20:11:38Z) - Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression [37.69303106863453]
The Information Bottleneck (IB) principle offers an information-theoretic framework for analyzing the training process of deep neural networks (DNNs)
In this paper, we introduce a framework for conducting IB analysis of general NNs.
We also perform IB analysis on a close-to-real-scale, which reveals new features of the MI dynamics.
arXiv Detail & Related papers (2023-05-13T21:44:32Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
We use Complex Network Theory to represent Deep Neural Networks (DNNs) as directed weighted graphs.
We introduce metrics to study DNNs as dynamical systems, with a granularity that spans from weights to layers, including neurons.
We show that our metrics discriminate low vs. high performing networks.
arXiv Detail & Related papers (2022-09-12T16:26:04Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
Complex Network Theory (CNT) represents Deep Neural Networks (DNNs) as directed weighted graphs to study them as dynamical systems.
We introduce metrics for nodes/neurons and layers, namely Nodes Strength and Layers Fluctuation.
Our framework distills trends in the learning dynamics and separates low from high accurate networks.
arXiv Detail & Related papers (2021-10-06T10:03:32Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - SGD Distributional Dynamics of Three Layer Neural Networks [7.025709586759655]
In paper, we seek to extend the mean field results of Mei et al. from two neural networks with one hidden layer to three neural networks with two hidden layers.
We will show that the SGD is captured by a set of non-linear differential equations, and prove that distributions of dynamics in the two layers are independent.
arXiv Detail & Related papers (2020-12-30T04:37:09Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
We define a notion of complexity, which quantifies the nonlinearity of the computation of a neural network.
We investigate these observables both for trained networks as well as explore their dynamics during training.
arXiv Detail & Related papers (2020-06-08T17:59:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.