Neural Reflectance Fields for Radio-Frequency Ray Tracing
- URL: http://arxiv.org/abs/2501.02458v1
- Date: Sun, 05 Jan 2025 06:52:35 GMT
- Title: Neural Reflectance Fields for Radio-Frequency Ray Tracing
- Authors: Haifeng Jia, Xinyi Chen, Yichen Wei, Yifei Sun, Yibo Pi,
- Abstract summary: Ray tracing is widely employed to model the propagation of radio-frequency (RF) signal in complex environment.
We tackle this problem by learning the material reflectivity efficiently from the path loss of the RF signal from transmitters to receivers.
We achieve this by translating the neural reflectance field from optics to RF domain by modelling both the amplitude and phase of RF signals.
- Score: 12.517163884907433
- License:
- Abstract: Ray tracing is widely employed to model the propagation of radio-frequency (RF) signal in complex environment. The modelling performance greatly depends on how accurately the target scene can be depicted, including the scene geometry and surface material properties. The advances in computer vision and LiDAR make scene geometry estimation increasingly accurate, but there still lacks scalable and efficient approaches to estimate the material reflectivity in real-world environment. In this work, we tackle this problem by learning the material reflectivity efficiently from the path loss of the RF signal from the transmitters to receivers. Specifically, we want the learned material reflection coefficients to minimize the gap between the predicted and measured powers of the receivers. We achieve this by translating the neural reflectance field from optics to RF domain by modelling both the amplitude and phase of RF signals to account for the multipath effects. We further propose a differentiable RF ray tracing framework that optimizes the neural reflectance field to match the signal strength measurements. We simulate a complex real-world environment for experiments and our simulation results show that the neural reflectance field can successfully learn the reflection coefficients for all incident angles. As a result, our approach achieves better accuracy in predicting the powers of receivers with significantly less training data compared to existing approaches.
Related papers
- Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
Implicit representations like Neural Radiance Fields (NeRF) showed impressive results for rendering of complex scenes with fine details.
We present a novel reflection tracing method tailored for the involved volume rendering within NeRF.
We derive efficient strategies for importance sampling and the transmittance computation along rays from only few samples.
arXiv Detail & Related papers (2023-10-16T17:59:56Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
We propose FlipNeRF, a novel regularization method for few-shot novel view synthesis by utilizing our proposed flipped reflection rays.
FlipNeRF is able to estimate more reliable outputs with reducing floating artifacts effectively across the different scene structures.
arXiv Detail & Related papers (2023-06-30T15:11:00Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Learning Neural Transmittance for Efficient Rendering of Reflectance
Fields [43.24427791156121]
We propose a novel method based on precomputed Neural Transmittance Functions to accelerate rendering of neural reflectance fields.
Results on real and synthetic scenes demonstrate almost two order of magnitude speedup for renderings under environment maps with minimal accuracy loss.
arXiv Detail & Related papers (2021-10-25T21:12:25Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.