Repulsive quantum gravitoelectric-gravitomagnetic interaction
- URL: http://arxiv.org/abs/2501.02470v2
- Date: Sun, 16 Feb 2025 01:24:45 GMT
- Title: Repulsive quantum gravitoelectric-gravitomagnetic interaction
- Authors: Di Hao, Jiawei Hu, Hongwei Yu,
- Abstract summary: We investigate the quantum gravitational interaction between a gravitoelectrically polarizable object and a gravitomagnetically polarizable object.
For two isotropically polarizable objects with identical gravitoelectric and gravitomagnetic polarizabilities and energy level spacing, the repulsive quantum interaction cannot surpass the attractive interactions.
- Score: 0.24578723416255752
- License:
- Abstract: We investigate, in the framework of linearized quantum gravity, the quantum gravitational interaction between a gravitoelectrically polarizable object and a gravitomagnetically polarizable object. This interaction originates from the coupling between the instantaneous mass quadrupole moment and the mass-current quadrupole moment of the objects, induced by fluctuating gravitoelectric and gravitomagnetic fields in a vacuum. Using leading-order perturbation theory, we derive the explicit expression of the quantum gravitoelectric-gravitomagnetic interaction energy, which shows a distance dependence of $r^{-8}$ in the near regime and $r^{-11}$ in the far regime, where $r$ is the distance between the two objects. Remarkably, this interaction energy is positive, indicating that the force is repulsive. Since interactions between objects polarizable in the same gravitoelectric or gravitomagnetic manner are inherently attractive, for objects which are both gravitoelectrically and gravitomagnetically polarizable, the overall quantum gravitational interaction potential is reduced when the repulsive quantum gravitoelectric-gravitomagnetic interaction is taken into account. However, for two isotropically polarizable objects with identical gravitoelectric and gravitomagnetic polarizabilities and energy level spacing, the repulsive quantum interaction cannot surpass the attractive interactions.
Related papers
- Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.
We exploit the input-output relation to connect the output state of the field to the input one.
We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Quantum gravitomagnetic interaction [0.24578723416255752]
We study the quantum gravitational interaction between two nonpointlike objects induced by fluctuating gravitomagnetic fields in vacuum.
This interaction originates from the interaction between the instantaneous localized mass currents in nonpointlike objects.
arXiv Detail & Related papers (2024-06-25T09:25:04Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Duality, decay rates and local-field models in macroscopic QED [0.0]
Heaviside-Larmor duality symmetry of Maxwell's equations is broken by the usual form of magnetic interaction energy.
Local fields should be treated as a necessity for correctly translating between the microscopic world of the dipole and the macroscopic world of the measured fields.
We compute the magnetic dipole decay rate in a magneto-dielectric with local-field effects taken into account.
arXiv Detail & Related papers (2021-12-10T19:00:00Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Quantum interference in external gravitational fields beyond General
Relativity [0.0]
We study the phenomenon of quantum interference in the presence of external gravitational fields.
In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm-Aharonov effect.
On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial role.
arXiv Detail & Related papers (2021-04-22T16:11:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Quantum gravitational interaction between two objects induced by
external gravitational radiation fields [0.12891210250935145]
We study the induced gravitational interaction between two gravitationally polarizable objects in their ground states in the presence of an external quantized gravitational radiation field.
The interaction can be either attractive or repulsive depending on the propagation direction, polarization and frequency of the external gravitational field.
arXiv Detail & Related papers (2020-06-11T12:04:35Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Resonance interaction between two entangled gravitational polarizable
objects [0.11470070927586014]
We investigate the resonance quadrupole-quadrupole interaction between two entangled gravitationally polarizable objects.
The interaction energy behaves as $r-5$ in the near regime, and oscillates with a decreasing amplitude proportional to $r-1$ in the far regime.
arXiv Detail & Related papers (2020-01-15T03:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.