Quantum gravitomagnetic interaction
- URL: http://arxiv.org/abs/2406.17402v1
- Date: Tue, 25 Jun 2024 09:25:04 GMT
- Title: Quantum gravitomagnetic interaction
- Authors: Di Hao, Jiawei Hu, Hongwei Yu,
- Abstract summary: We study the quantum gravitational interaction between two nonpointlike objects induced by fluctuating gravitomagnetic fields in vacuum.
This interaction originates from the interaction between the instantaneous localized mass currents in nonpointlike objects.
- Score: 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the framework of linearized quantum gravity, we study the quantum gravitational interaction between two nonpointlike objects induced by fluctuating gravitomagnetic fields in vacuum. We find that, in addition to the quantum gravitational interaction induced by fluctuating gravitoelectric fields previously studied, there exists a quantum gravitomagnetic interaction. This interaction originates from the interaction between the instantaneous localized mass currents in nonpointlike objects induced by the fluctuating gravitomagnetic fields. Using fourth-order perturbation theory, we derive the explicit form of the quantum gravitomagnetic interaction energy, which shows an $r^{-10}$ dependence in the near regime and an $r^{-11}$ dependence in the far regime, where $r$ is the distance between the two objects. This interaction energy is expected to be significant when the gravitomagnetic polarizability of the objects is large.
Related papers
- Quantum entanglement of masses with non-local gravitational interaction [0.0]
We consider an energy-momentum tensor describing two test particles of equal mass with each possessing some non-zero momentum.
We find that the change in the gravitational energy due to the self-interaction terms is finite.
We study the quantum gravity induced entanglement of masses for two different scenarios.
arXiv Detail & Related papers (2023-03-30T18:14:28Z) - Mechanism for the quantum natured gravitons to entangle masses [0.0]
This paper points out the importance of the quantum nature of the gravitational interaction with matter in a linearized theory of quantum gravity induced entanglement of masses (QGEM)
We will show how the quantum interaction entangles the steady states of a closed system of two test masses placed in the harmonic traps, and how such a quantum matter-matter interaction emerges from an underlying quantum gravitational field.
arXiv Detail & Related papers (2022-01-10T19:00:06Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Quantum interference in external gravitational fields beyond General
Relativity [0.0]
We study the phenomenon of quantum interference in the presence of external gravitational fields.
In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm-Aharonov effect.
On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial role.
arXiv Detail & Related papers (2021-04-22T16:11:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Quantum gravitational interaction between two objects induced by
external gravitational radiation fields [0.12891210250935145]
We study the induced gravitational interaction between two gravitationally polarizable objects in their ground states in the presence of an external quantized gravitational radiation field.
The interaction can be either attractive or repulsive depending on the propagation direction, polarization and frequency of the external gravitational field.
arXiv Detail & Related papers (2020-06-11T12:04:35Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Resonance interaction between two entangled gravitational polarizable
objects [0.11470070927586014]
We investigate the resonance quadrupole-quadrupole interaction between two entangled gravitationally polarizable objects.
The interaction energy behaves as $r-5$ in the near regime, and oscillates with a decreasing amplitude proportional to $r-1$ in the far regime.
arXiv Detail & Related papers (2020-01-15T03:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.