論文の概要: Generalization-Enhanced Few-Shot Object Detection in Remote Sensing
- arxiv url: http://arxiv.org/abs/2501.02474v1
- Date: Sun, 05 Jan 2025 08:12:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:19.329941
- Title: Generalization-Enhanced Few-Shot Object Detection in Remote Sensing
- Title(参考訳): リモートセンシングにおける一般化強化Few-Shotオブジェクト検出
- Authors: Hui Lin, Nan Li, Pengjuan Yao, Kexin Dong, Yuhan Guo, Danfeng Hong, Ying Zhang, Congcong Wen,
- Abstract要約: Few-shot Object Detection (FSOD) は、データ制限条件下でのオブジェクト検出の課題をターゲットにしている。
リモートセンシングタスクにおける一般化機能を改善するために,GE-FSODモデルを提案する。
我々のモデルでは、CFPAN(Cross-Level Fusion Pyramid Attention Network)、MRRPN(Multi-Stage Refinement Region Proposal Network)、GCL(Generalized Classification Loss)の3つの重要なイノベーションを紹介している。
- 参考スコア(独自算出の注目度): 22.411751110592842
- License:
- Abstract: Remote sensing object detection is particularly challenging due to the high resolution, multi-scale features, and diverse ground object characteristics inherent in satellite and UAV imagery. These challenges necessitate more advanced approaches for effective object detection in such environments. While deep learning methods have achieved remarkable success in remote sensing object detection, they typically rely on large amounts of labeled data. Acquiring sufficient labeled data, particularly for novel or rare objects, is both challenging and time-consuming in remote sensing scenarios, limiting the generalization capabilities of existing models. To address these challenges, few-shot learning (FSL) has emerged as a promising approach, aiming to enable models to learn new classes from limited labeled examples. Building on this concept, few-shot object detection (FSOD) specifically targets object detection challenges in data-limited conditions. However, the generalization capability of FSOD models, particularly in remote sensing, is often constrained by the complex and diverse characteristics of the objects present in such environments. In this paper, we propose the Generalization-Enhanced Few-Shot Object Detection (GE-FSOD) model to improve the generalization capability in remote sensing FSOD tasks. Our model introduces three key innovations: the Cross-Level Fusion Pyramid Attention Network (CFPAN) for enhanced multi-scale feature representation, the Multi-Stage Refinement Region Proposal Network (MRRPN) for more accurate region proposals, and the Generalized Classification Loss (GCL) for improved classification performance in few-shot scenarios. Extensive experiments on the DIOR and NWPU VHR-10 datasets show that our model achieves state-of-the-art performance for few-shot object detection in remote sensing.
- Abstract(参考訳): リモートセンシングオブジェクト検出は、高解像度、マルチスケールの特徴、衛星画像やUAV画像に固有の多様な地上物体特性のため、特に困難である。
これらの課題は、そのような環境で効果的なオブジェクト検出のためのより高度なアプローチを必要とする。
深層学習法はリモートセンシングオブジェクト検出において顕著な成功を収めてきたが、通常は大量のラベル付きデータに依存している。
十分なラベル付きデータ、特に新規または稀なオブジェクトの取得は、リモートセンシングシナリオにおいて困難かつ時間を要するため、既存のモデルの一般化能力を制限している。
これらの課題に対処するために、限定ラベル付き例から新しいクラスを学習可能にすることを目的とした、有望なアプローチとして、少数ショット学習(FSL)が登場した。
この概念に基づいて、少数ショットオブジェクト検出(FSOD)は、データ制限条件下でのオブジェクト検出の課題を特に対象とする。
しかし、FSODモデルの一般化能力は、特にリモートセンシングにおいて、そのような環境に存在する物体の複雑で多様な特性によって制約されることが多い。
本稿では,汎用Few-FSOD(Generalization-Enhanced Few-Shot Object Detection, GE-FSOD)モデルを提案する。
本モデルでは,マルチスケール特徴表現向上のためのCFPAN(Cross-Level Fusion Pyramid Attention Network),より高精度な領域提案のためのMRRPN(Multi-Stage Refinement Region Proposal Network),少数ショットシナリオにおける分類性能向上のための一般化分類損失(GCL)の3つの重要なイノベーションを紹介した。
DIORとNWPU VHR-10データセットの大規模な実験により,我々のモデルはリモートセンシングにおける数発の物体検出において最先端の性能を達成することが示された。
関連論文リスト
- Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
FSOD(Few-shot Object Detection)は、トレーニングのために大量のラベル付きデータを頼りにしている。
リモートセンシング画像におけるオブジェクトのスケールと向きのバリエーションは、既存のFSOD法に重大な課題をもたらす。
特徴ピラミッドネットワークの統合と,クエリ機能向上のためのプロトタイプ機能の利用を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:21:38Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
本稿では,物体検出における識別的特徴の役割について論じる。
次に,検出精度を向上させるために,cfc-net (critical feature capture network) を提案する。
本手法は多くの最先端手法と比較して優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-18T02:31:09Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。