Decoding News Bias: Multi Bias Detection in News Articles
- URL: http://arxiv.org/abs/2501.02482v1
- Date: Sun, 05 Jan 2025 09:09:53 GMT
- Title: Decoding News Bias: Multi Bias Detection in News Articles
- Authors: Bhushan Santosh Shah, Deven Santosh Shah, Vahida Attar,
- Abstract summary: We have explored various biases present in the news articles and built a dataset using large language models (LLMs)
Our approach highlights the importance of broad-spectrum bias detection and offers new insights for improving the integrity of news articles.
- Score: 1.433758865948252
- License:
- Abstract: News Articles provides crucial information about various events happening in the society but they unfortunately come with different kind of biases. These biases can significantly distort public opinion and trust in the media, making it essential to develop techniques to detect and address them. Previous works have majorly worked towards identifying biases in particular domains e.g., Political, gender biases. However, more comprehensive studies are needed to detect biases across diverse domains. Large language models (LLMs) offer a powerful way to analyze and understand natural language, making them ideal for constructing datasets and detecting these biases. In this work, we have explored various biases present in the news articles, built a dataset using LLMs and present results obtained using multiple detection techniques. Our approach highlights the importance of broad-spectrum bias detection and offers new insights for improving the integrity of news articles.
Related papers
- Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs [50.40165119718928]
LongPiBench is a benchmark designed to assess positional bias involving multiple pieces of relevant information.
These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces.
arXiv Detail & Related papers (2024-10-18T17:41:19Z) - Target-Aware Contextual Political Bias Detection in News [22.396285428304083]
Sentence-level political bias detection in news is a challenging task that requires an understanding of bias in consideration of the context.
Previous work in media bias detection has proposed augmentation techniques to exploit this fact.
We propose techniques to more carefully search for context using a bias-sensitive, target-aware approach for data augmentation.
arXiv Detail & Related papers (2023-10-02T12:25:05Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
I aim to devise data sets and methods to identify media bias.
My vision is to devise a system that helps news readers become aware of media coverage differences caused by bias.
arXiv Detail & Related papers (2021-12-26T10:46:32Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
We present a system for bias identification, which combines state-of-the-art methods from natural language understanding.
Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers.
Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption.
arXiv Detail & Related papers (2021-10-18T10:23:19Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
We present an in-progress system for news recommendation that is the first to automate the manual procedure of content analysis.
Our recommender detects and reveals substantial frames that are actually present in individual news articles.
Our study shows that recommending news articles that differently frame an event significantly improves respondents' awareness of bias.
arXiv Detail & Related papers (2021-10-18T10:13:23Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
We show that publicly available language models can reliably generate biased news content based on an input original news.
We also show that a large number of high-quality biased news articles can be generated using controllable text generation.
arXiv Detail & Related papers (2020-10-05T16:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.