論文の概要: Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines
- arxiv url: http://arxiv.org/abs/2501.02493v1
- Date: Sun, 05 Jan 2025 10:04:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:46.345794
- Title: Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines
- Title(参考訳): 機械学習モデルを用いたマルウェアの脆弱性予測:Microsoft Windowsマシンの研究
- Authors: Marzieh Esnaashari, Nima Moradi,
- Abstract要約: 本研究では機械学習(ML)技術を活用した効果的なマルウェア検出戦略の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In an era of escalating cyber threats, malware poses significant risks to individuals and organizations, potentially leading to data breaches, system failures, and substantial financial losses. This study addresses the urgent need for effective malware detection strategies by leveraging Machine Learning (ML) techniques on extensive datasets collected from Microsoft Windows Defender. Our research aims to develop an advanced ML model that accurately predicts malware vulnerabilities based on the specific conditions of individual machines. Moving beyond traditional signature-based detection methods, we incorporate historical data and innovative feature engineering to enhance detection capabilities. This study makes several contributions: first, it advances existing malware detection techniques by employing sophisticated ML algorithms; second, it utilizes a large-scale, real-world dataset to ensure the applicability of findings; third, it highlights the importance of feature analysis in identifying key indicators of malware infections; and fourth, it proposes models that can be adapted for enterprise environments, offering a proactive approach to safeguarding extensive networks against emerging threats. We aim to improve cybersecurity resilience, providing critical insights for practitioners in the field and addressing the evolving challenges posed by malware in a digital landscape. Finally, discussions on results, insights, and conclusions are presented.
- Abstract(参考訳): サイバー脅威がエスカレートする時代には、マルウェアは個人や組織に重大なリスクをもたらし、潜在的にデータ漏洩やシステム障害、重大な財政的損失につながる可能性がある。
この研究は、Microsoft Windows Defenderから収集した広範囲なデータセットに機械学習(ML)技術を活用することにより、効果的なマルウェア検出戦略の緊急の必要性に対処する。
本研究の目的は、個々のマシンの特定の状況に基づいて、マルウェアの脆弱性を正確に予測する高度なMLモデルを開発することである。
従来のシグネチャベースの検出方法を超えて、歴史的データと革新的な機能エンジニアリングを取り入れて、検出機能を強化します。
第1に、高度なMLアルゴリズムを用いて既存のマルウェア検出手法を進化させ、第2に、発見の適用性を確保するために大規模な実世界のデータセットを使用し、第3に、マルウェア感染の主な指標を特定する上での特徴分析の重要性を強調し、第4に、エンタープライズ環境に適用可能なモデルを提案し、新興脅威に対して広範なネットワークを保護するための積極的なアプローチを提供する。
我々は、サイバーセキュリティのレジリエンスを改善し、現場の実践者に重要な洞察を提供し、デジタルランドスケープにおけるマルウェアによって引き起こされる課題に対処することを目指している。
最後に、結果、洞察、結論について議論する。
関連論文リスト
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
社会的利益にもかかわらず、最近の研究はグラフMLモデルの普及に伴う重要な安全性上の懸念を浮き彫りにしている。
安全性を重視した設計が欠如しているため、これらのモデルは信頼性の低い予測を導き、一般化性の低下を示し、データの機密性を侵害することができる。
金融詐欺検出のような高額なシナリオでは、これらの脆弱性は個人と社会の両方を全般的に危険に晒す可能性がある。
論文 参考訳(メタデータ) (2024-05-17T18:11:11Z) - Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls [3.5698678013121334]
本研究は,システムコールデータに基づいてマルウェアを分類するために,大規模言語モデル(LLM)を利用した新しいフレームワークを提案する。
1TBを超えるシステムコールのデータセットによる実験では、BigBirdやLongformerのようなより大きなコンテキストサイズを持つモデルの方が精度が良く、F1スコアは約0.86である。
このアプローチは、ハイテイク環境におけるリアルタイム検出の大きな可能性を示し、サイバー脅威の進化に対する堅牢なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-15T13:19:43Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity [0.0]
従来のシグネチャベースのマルウェア検出方法は、複雑な脅威を検出するのに制限がある。
近年、機械学習はマルウェアを効果的に検出する有望なソリューションとして出現している。
MLアルゴリズムは、大規模なデータセットを分析し、人間が識別するのが困難なパターンを特定することができる。
論文 参考訳(メタデータ) (2023-02-24T02:42:38Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。