Knowledge Distillation with Adapted Weight
- URL: http://arxiv.org/abs/2501.02705v1
- Date: Mon, 06 Jan 2025 01:16:07 GMT
- Title: Knowledge Distillation with Adapted Weight
- Authors: Sirong Wu, Xi Luo, Junjie Liu, Yuhui Deng,
- Abstract summary: Large models are hard to deploy in a real-time system due to computational and energy constraints.
Knowledge distillation through Teacher-Student architecture offers a sustainable pathway to compress the knowledge of large models.
We propose the textbfKnowledge Distillation with Adaptive Influence Weight (KD-AIF) framework which leverages influence functions to assign weights to training data.
- Score: 6.0635849782457925
- License:
- Abstract: Although large models have shown a strong capacity to solve large-scale problems in many areas including natural language and computer vision, their voluminous parameters are hard to deploy in a real-time system due to computational and energy constraints. Addressing this, knowledge distillation through Teacher-Student architecture offers a sustainable pathway to compress the knowledge of large models into more manageable sizes without significantly compromising performance. To enhance the robustness and interpretability of this framework, it is critical to understand how individual training data impact model performance, which is an area that remains underexplored. We propose the \textbf{Knowledge Distillation with Adaptive Influence Weight (KD-AIF)} framework which leverages influence functions from robust statistics to assign weights to training data, grounded in the four key SAFE principles: Sustainability, Accuracy, Fairness, and Explainability. This novel approach not only optimizes distillation but also increases transparency by revealing the significance of different data. The exploration of various update mechanisms within the KD-AIF framework further elucidates its potential to significantly improve learning efficiency and generalization in student models, marking a step toward more explainable and deployable Large Models. KD-AIF is effective in knowledge distillation while also showing exceptional performance in semi-supervised learning with outperforms existing baselines and methods in multiple benchmarks (CIFAR-100, CIFAR-10-4k, SVHN-1k, and GLUE).
Related papers
- Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.
The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - Active Data Curation Effectively Distills Large-Scale Multimodal Models [66.23057263509027]
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones.
In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining.
Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations.
arXiv Detail & Related papers (2024-11-27T18:50:15Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - Density Adaptive Attention is All You Need: Robust Parameter-Efficient Fine-Tuning Across Multiple Modalities [0.9217021281095907]
DAAM integrates learnable mean and variance into its attention mechanism, implemented in a multi-head framework.
DAAM exhibits superior adaptability and efficacy across a diverse range of tasks, including emotion recognition in speech, image classification, and text classification.
We introduce the Importance Factor, a new learning-based metric that enhances the explainability of models trained with DAAM-based methods.
arXiv Detail & Related papers (2024-01-20T06:42:32Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Distilling Out-of-Distribution Robustness from Vision-Language
Foundation Models [40.885755686727855]
We propose a conceptually simple and lightweight framework for improving the robustness of vision models.
We show strong gains in out-of-distribution robustness when distilling from pretrained foundation models.
We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting.
arXiv Detail & Related papers (2023-11-02T17:55:13Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
We propose MixKD, a data-agnostic distillation framework, to endow the resulting model with stronger generalization ability.
We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the error and the empirical error.
Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
arXiv Detail & Related papers (2020-11-01T18:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.